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Preface

The use of computers to recognize humans from physical and behavioral
traits dates back to the digital computer evolution of the 1960s. But even
after decades of research and hundreds of major deployments, the field of
biometrics remains fresh and exciting as new technologies are developed
and old technologies are improved and fielded in new applications. World-
wide over the past few years, there has been a marked increase in both gov-
ernment and private sector interest in large-scale biometric deployments
for accelerating human–machine processes, efficiently delivering human
services, fighting identity fraud and even combating terrorism. The pur-
pose of this book is to explore the current state of the art in biometric sys-
tems and it is the system aspect that we have wished to emphasize.

By their nature, biometric technologies sit at the exact boundary of the
human–machine interface. But like all technologies, by themselves they can
provide no value until deployed in a system with support hardware, net-
work connections, computers, policies and procedures, all tuned together
to work with people to improve some real business process within a social
structure.

In this book, we bring together some of the most respected and experi-
enced international researchers and practitioners in the field to look
closely at biometric systems from many disciplinary angles. We focus on
the technologies of fingerprint, iris, face and speaker recognition, how
those technologies have evolved, how they work, and how well they work as
determined in recent test programs. We look at the challenges of designing
and deploying biometrics in people-centered systems, particularly when
those systems become large. We conclude with discussions on the legal and
privacy issues of biometric deployments from both European and US per-
spectives. We hope you find this book valuable in understanding both the
historical accomplishments and remaining challenges in this fascinating
field.

James Wayman
Anil Jain

Davide Maltoni
Dario Maio
31 July 2004
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1An Introduction to Biometric
Authentication Systems

James Wayman, Anil Jain, Davide Maltoni and Dario Maio

1.1 Introduction

Immigration cards holding both passport number and measures of the
user’s hand [1]; fingerprints taken as a legal requirement for a driver
license, but not stored anywhere on the license [2]; automatic facial recog-
nition systems searching for known card cheats in a casino [3]; season
tickets to an amusement park linked to the shape of the purchaser’s fingers
[4]; home incarceration programs supervised by automatic voice recogni-
tion systems [5]; and confidential delivery of health care through iris rec-
ognition [6]: these systems seem completely different in terms of purpose,
procedures, and technologies, but each uses “biometric authentication” in
some way. In this book, we will be exploring many of the technologies and
applications that make up the field of “biometric authentication” – what
unites them and what differentiates them from each other. In this chapter,
we want to present a systematic approach to understanding in a unified way
the multitude of technologies and applications of the field.

We start with a narrow definition, designed as much to limit the scope of
our inquiry as to determine it.

“Biometric technologies” are automated methods of verifying or recognizing
the identity of a living person based on a physiological or behavioral charac-
teristic [7, 8].

There are two key words in this definition: “automated” and “person”.
The word “automated” differentiates biometrics from the larger field of
human identification science. Biometric authentication techniques are
done completely by machine, generally (but not always) a digital computer.
Forensic laboratory techniques, such as latent fingerprint, DNA, hair and
fiber analysis, are not considered part of this field. Although automated
identification techniques can be used on animals, fruits and vegetables [9],
manufactured goods and the deceased, the subjects of biometric authenti-
cation are living humans. For this reason, the field should perhaps be more
accurately called “anthropometric authentication”.

The second key word is “person”. Statistical techniques, particularly
using fingerprint patterns, have been used to differentiate or connect

1



groups of people [10, 11] or to probabilistically link persons to groups, but
biometrics is interested only in recognizing people as individuals. All of the
measures used contain both physiological and behavioral components,
both of which can vary widely or be quite similar across a population of
individuals. No technology is purely one or the other, although some mea-
sures seem to be more behaviorally influenced and some more physiologi-
cally influenced. The behavioral component of all biometric measures
introduces a “human factors” or “psychological” aspect to biometric
authentication as well.

In practice, we often abbreviate the term “biometric authentication” as
“biometrics”, although the latter term has been historically used to mean
the branch of biology that deals with its data statistically and by quantita-
tive analysis [12].

So “biometrics”, in this context, is the use of computers to recognize
people, despite all of the across-individual similarities and within-indi-
vidual variations. Determining “true” identity is beyond the scope of any
biometric technology. Rather, biometric technology can only link a person
to a biometric pattern and any identity data (common name) and personal
attributes (age, gender, profession, residence, nationality) presented at the
time of enrollment in the system. Biometric systems inherently require no
identity data, thus allowing anonymous recognition [4].

Ultimately, the performance of a biometric authentication system, and
its suitability for any particular task, will depend upon the interaction of
individuals with the automated mechanism. It is this interaction of tech-
nology with human physiology and psychology that makes “biometrics”
such a fascinating subject.

1.2 A Quick Historical Overview

The scientific literature on quantitative measurement of humans for the pur-
pose of identification dates back to the 1870s and the measurement system of
Alphonse Bertillon [13–17]. Bertillon’s system of body measurements,
including such measures as skull diameter and arm and foot length, was used
in the USA to identify prisoners until the 1920s. Henry Faulds, William
Herschel and Sir Francis Galton proposed quantitative identification through
fingerprint and facial measurements in the 1880s [18–20]. The development of
digital signal processing techniques in the 1960s led immediately to work in
automating human identification. Speaker [21–26] and fingerprint recogni-
tion [27] systems were among the first to be explored. The potential for appli-
cation of this technology to high-security access control, personal locks and
financial transactions was recognized in the early 1960s [28]. The 1970s saw
development and deployment of hand geometry systems [29], the start of
large-scale testing [30] and increasing interest in government use of these
“automated personal identification” technologies [31]. Retinal [32, 33] and
signature verification [34, 35] systems came in the 1980s, followed by face
[36–42] systems. Iris recognition [43,44] systems were developed in the 1990s.
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1.3 The “Best” Biometric Characteristic

Examples of physiological and behavioral characteristics currently used
for automatic identification include fingerprints, voice, iris, retina, hand,
face, handwriting, keystroke, and finger shape. But this is only a partial list
as new measures (such as gait, ear shape, head resonance, optical skin
reflectance and body odor) are being developed all of the time. Because of
the broad range of characteristics used, the imaging requirements for the
technology vary greatly. Systems might measure a single one-dimensional
signal (voice); several simultaneous one-dimensional signals (hand-
writing); a single two-dimensional image (fingerprint); multiple two-
dimensional measures (hand geometry); a time series of two-dimensional
images (face and iris); or a three-dimensional image (some facial recogni-
tion systems).

Which biometric characteristic is best? The ideal biometric character-
istic has five qualities: robustness, distinctiveness, availability, accessi-
bility and acceptability [45, 46]. By “robust”, we mean unchanging on an
individual over time. By “distinctive”, we mean showing great variation
over the population. By “available”, we mean that the entire population
should ideally have this measure in multiples. By “accessible”, we mean
easy to image using electronic sensors. By “acceptable”, we mean that
people do not object to having this measurement taken from them.

Quantitative measures of these five qualities have been developed
[47–50]. Robustness is measured by the “false non-match rate” (also
known as “Type I error”), the probability that a submitted sample will not
match the enrollment image. Distinctiveness is measured by the “false
match rate” (also known as “Type II error”) – the probability that a sub-
mitted sample will match the enrollment image of another user. Avail-
ability is measured by the “failure to enroll” rate, the probability that a
user will not be able to supply a readable measure to the system upon
enrollment. Accessibility can be quantified by the “throughput rate” of
the system, the number of individuals that can be processed in a unit time,
such as a minute or an hour. Acceptability is measured by polling the
device users. The first four qualities are inversely related to their above
measures, a higher “false non-match rate”, for instance, indicating a lower
level of robustness.

Having identified the required qualities and measures for each quality, it
would seem a straightforward problem to simply run some experiments,
determine the measures, and set a weighting value for the importance of
each, thereby determining the “best” biometric characteristic. Unfortu-
nately, for all biometric characteristics, all of the desired qualities have
been found to be highly dependent on the specifics of the application, the
population (both their physiological and psychological states), and the
hardware/software system used [51–54]. We cannot predict performance
metrics for one application from tests on another. Further, the five metrics,
which are correlated in a highly complex way, can be manipulated to some
extent by administration policy.
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System administrators might ultimately be concerned with: (1) the “false
rejection rate”, which is the probability that a true user identity claim will
be falsely rejected, thus causing inconvenience; (2) the “false acceptance
rate”, which is the probability that a false identity claim will be accepted,
thus allowing fraud; (3) the system throughput rate, measuring the number
of users that can be processed in a time period; (4) the user acceptance of
the system, which may be highly dependent upon the way the system is
“packaged” and marketed; and (5) the ultimate total cost savings realized
from implementing the system [55]. These latter, more practical, measures
depend upon the basic system qualities in highly complex and competitive
ways that are not at all well understood, and can be controlled only to a lim-
ited extent through administrative decisions [56, 57]. Predicting the “false
acceptance” and “false rejection” rates, and system throughput, user accep-
tance and cost savings for operational systems from test data, is a
surprisingly difficult task.

For the users, the questions are simple: “Is this system easier, faster,
friendlier and more convenient than the alternatives?”. These issues, too,
are highly application-, technology- and marketing-specific.

Consequently, it is impossible to state that a single biometric character-
istic is “best” for all applications, populations, technologies and adminis-
tration policies. Yet some biometric characteristics are clearly more
appropriate than others for any particular application. System administra-
tors wishing to employ biometric authentication need to articulate clearly
the specifics of their application. In the following sections, we look more
carefully at the distinctions between applications.

1.4 The Applications

The operational goals of biometric applications are just as variable as the
technologies: some systems search for known individuals; some search for
unknown individuals; some verify a claimed identity; some verify an
unclaimed identity; and some verify that the individual has no identity in
the system at all. Some systems search one or multiple submitted samples
against a large database of millions of previously stored “templates” – the
biometric data given at the time of enrollment. Some systems search one or
multiple samples against a database of a few “models” – mathematical rep-
resentations of the signal generation process created at the time of enroll-
ment. Some systems compare submitted samples against models of both
the claimed identity and impostor identities. Some systems search one or
multiple samples against only one “template” or “model”.

And the application environments can vary greatly – outdoors or
indoors, supervised or unsupervised, with people trained or not trained in
the use of the acquisition device.

To make sense out of all of the technologies, application goals and envi-
ronments, we need a systematic method of approach – taxonomies of uses
and applications.
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1.5 A Taxonomy of Uses

A biometric system can be designed to test one of only two possible
hypotheses: (1) that the submitted samples are from an individual known
to the system; or (2) that the submitted samples are from an individual not
known to the system. Applications to test the first hypothesis are called
“positive identification” systems (verifying a positive claim of enrollment),
while applications testing the latter are “negative identification” systems
(verifying a claim of no enrollment). All biometric systems are of one type
or the other. This is the most important distinction between systems, and
controls potential architectures, vulnerabilities and system error rates.

“Positive” and “negative” identification are “duals” of each other. Positive
identification systems generally1 serve to prevent multiple users of a single
identity, while negative identification systems serve to prevent multiple
identities of a single user. In positive identification systems, enrolled tem-
plate or model storage can be centralized or decentralized in manner,
including placement on optically read, magnetic stripe or smart cards.
Negative identification systems demand centralized storage. Positive iden-
tification systems reject a user’s claim to identity if no match between sub-
mitted samples and enrolled templates is found. Negative identification
systems reject a user’s claim to no identity if a match is found. Regardless of
type of system, false rejections are a nuisance to users and false acceptances
allow fraud.

An example of a positive identification system is the use of biometrics
for employee access control at San Francisco International Airport. Hand
geometry has been used since the early 1990s to control access by
employees to secured airport areas. There are currently 180 readers used by
about 18,000 enrolled users. Employees activate the system by swiping a
magnetic stripe identity card through a reader. The purpose of the system
is to limit use of the identification card to the enrolled owner, thereby pro-
hibiting use of the card by multiple users. Although the 9-byte template
could be stored on the magnetic stripe, in this case it is stored centrally to
allow updating upon successful use. The stored hand shape template
indexed to the card is transmitted from the central server to the access con-
trol device. The user then places the right hand in the hand geometry
reader, making the implicit claim, “I am the user who is enrolled to use this
card”. If the submitted hand sample is found to be “close enough” to the
stored template, the user’s claim is accepted.

Santa Clara County, located in California near the San Francisco Interna-
tional Airport, requires the fingerprints of both left and right index fingers
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from all applicants for social service benefits. Citizens are only eligible for
benefits under a single identity and must attest upon enrollment that they
are not already enrolled in the system. Consequently, this biometric system
is for “negative identification”. When an applicant applies for benefits, he
or she places the index fingers on an electronic scanner with the implicit
claim, “I am not known to this system”. The submitted fingerprints are
searched against the entire centralized database of enrolled persons –
although to facilitate the search, the prints in the database might be parti-
tioned by gender. If no match is found, the claim of non-identity in the
system is accepted.

Use of biometrics in positive identification systems can be voluntary
because alternative methods for verifying a claimed identity exist. Those
electing not to use biometrics can have their identity verified in other ways,
such as by presentation of a passport or driver’s license. Use of biometrics
in negative identification systems must be mandatory for all users because
no alternative methods exist for verifying a claim of no known identity.

Those wishing to circumvent a positive identification system need to
create a false match by impersonating an enrolled user. The possibility of
biometric mimicry and forgery has been recognized since the 1970s [47, 58,
59]. Those wishing to circumvent a negative identification system need to
submit altered samples not matching a previous enrollment. Table 1.1 sum-
marizes these differences.

Historically, a distinction has been made between systems that verify a
claimed identity and those that identify users without a claim of identity,
perhaps returning a result that no identity was found. Some systems com-
pare a single input sample to a single stored template or model to produce a
“verification”, or compare a single input sample to many stored templates
to produce an “identification”. Identification systems are said to compare
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Positive Negative

To prove I am someone known to the
system

To prove I am not someone known to the
system

To prevent multiple users of a single
identity

To prevent multiple identities of a single
user

Comparison of submitted sample to single
claimed template – “one-to-one” under
the most common system design

Comparison of submitted sample to all
enrolled templates – “one-to-many”

A “false match” leads to “false acceptance” A “false match” or a “failure to acquire”
leads to a “false rejection”

A “false non-match” or a “failure to
acquire” leads to a “false rejection”

A “false non-match” leads to a “false
acceptance”

Alternative identification methods exist No alternative methods exist

Can be voluntary Must be mandatory for all

Spoofed by submitting someone else’s
biometric measures

Spoofed by submitting no or altered
measures

Table 1.1 Identification: “positive” and “negative”.



samples from one person to templates from many persons, with verifica-
tion being the degenerate case of “many” equal to one. In the mid-1990s,
several companies began to promote “PIN-less verification” systems, in
which verification was accomplished without a claim to identity. The “veri-
fication/identification” dichotomy has been further clouded by the devel-
opment of surveillance and modern “few-to-many” access control systems,
which cannot be consistently classified as either “verification” or “identifi-
cation”. The uses and search strategies of biometric systems have expanded
to the point where these distinctions of “verification/identification” and
“one-to-one/one-to-many” are no longer fully informative.

Ultimately, a biometric system can only link a submitted sample to an
enrolled template or model: that record created upon first use of the system
by a person. That enrollment template/model need not be connected with
any identifying information, such as a name or registration number. In fact,
biometric measures and the enrollment templates/models derived from
them contain no information about name, age, nationality, race or gender.
Consequently, use of a biometric system without linkages of stored data to
common identifiers allows for anonymous authentication. If system
administrators have a need to connect the stored biometric data to other
information, such as a name, that must be done by the presentation and
human certification of trusted identifying credentials at the time of enroll-
ment. Subsequent identification by the biometric system is no more reli-
able than this source documentation. But once that link has been made,
subsequent identifications can be made without reference to the original
source documents.

1.6 A Taxonomy of Application Environments

In the early 1990s, as we gained experience with the use of biometric
devices, it became apparent that variations in the application environment
had a significant impact on the way the devices performed. In fact, accurate
characterization of the operational environment is primary in selecting
the best biometric technology and in predicting the system’s operational
characteristics. In this section, we will present a method for analyzing a
proposed operational environment by differentiating applications based
on partitioning into six categories beyond the “positive” and “negative”
applications already discussed.

1.6.1 Overt Versus Covert

The first partition is “overt/covert”. If the user is aware that a biometric
identifier is being measured, the use is overt. If unaware, the use is covert.
Almost all conceivable access control and non-forensic applications are
overt. Forensic applications can be covert.
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1.6.2 Habituated Versus Non-Habituated

The second partition, “habituated/non-habituated”, applies to the
intended users of the application. Users presenting a biometric trait on a
daily basis can be considered habituated after a short period of time. Users
who have not presented the trait recently can be considered “non-habitu-
ated”. A more precise definition will be possible after we have better infor-
mation relating system performance to frequency of use for a wide
population over a wide field of devices. If all the intended users are “habitu-
ated”, the application is considered a “habituated” application. If all the
intended users are “non-habituated”, the application is considered “non-
habituated”. In general, all applications will be “non-habituated” during
the first week of operation, and can have a mixture of habituated and non-
habituated users at any time thereafter. Access control to a secure work area
is generally “habituated”. Access control to a sporting event is generally
“non-habituated”.

1.6.3 Attended Versus Non-Attended

A third partition is “attended/unattended”, and refers to whether the use of
the biometric device during operation will be observed and guided by
system management. Non-cooperative applications will generally require
supervised operation, while cooperative operation may or may not. Nearly
all systems supervise the enrollment process, although some do not [4].

1.6.4 Standard Versus Non-Standard Environment

A fourth partition is “standard/non-standard operating environment”. If
the application will take place indoors at standard temperature (20 °C),
pressure (1 atm), and other environmental conditions, particularly where
lighting conditions can be controlled, it is considered a “standard environ-
ment” application. Outdoor systems, and perhaps some unusual indoor
systems, are considered “non-standard environment” applications.

1.6.5 Public Versus Private

A fifth partition is “public/private”. Will the users of the system be cus-
tomers of the system management (public) or employees (private)? Clearly,
attitudes toward usage of the devices, which will directly affect perfor-
mance, vary depending upon the relationship between the end-users and
system management.

1.6.6 Open Versus Closed

A sixth partition is “open/closed”. Will the system be required, now or in
the future, to exchange data with other biometric systems run by other
management? For instance, some US state social services agencies want to
be able to exchange biometric information with other states. If a system is
to be open, data collection, compression and format standards are
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required. A closed system can operate perfectly well on completely propri-
etary formats.

This list is open, meaning that additional partitions might also be appro-
priate. We could also argue that not all possible partition permutations are
equally likely or even permissible.

1.6.7 Examples of the Classification of Applications

Every application can be classified according to the above partitions. For
instance, the positive biometric identification of users of the Immigration
and Naturalization Service’s Passenger Accelerated Service System
(INSPASS) [1, 60], currently in place at Kennedy, Newark, Los Angeles,
Miami, Detroit, Washington Dulles, Vancouver and Toronto airports for rap-
idly admitting frequent travelers into the USA, can be classified as a coopera-
tive, overt, non-attended, non-habituated, standard environment, public,
closed application. The system is cooperative because those wishing to
defeat the system will attempt to be identified as someone already holding a
pass. It will be overt because all will be aware that they are required to give a
biometric measure as a condition of enrollment into this system. It will be
non-attended and in a standard environment because collection of the bio-
metric will occur near the passport inspection counter inside the airports,
but not under the direct observation of an INS employee. It will be non-
habituated because most international travelers use the system less than
once per month. The system is public because enrollment is open to any fre-
quent traveler into the USA. It is closed because INSPASS does not exchange
biometric information with any other system.

The negative identification systems for preventing multiple identities of
social service recipients can be classified as non-cooperative, overt,
attended, non-habituated, open, standard environment systems.

Clearly, the latter application is more difficult than the former. Therefore
we cannot directly compare hand geometry and facial recognition technol-
ogies based on the error rates across these very different applications.

1.7 A System Model

Although these devices rely on widely different technologies, much can be
said about them in general. Figure 1.1 shows a generic biometric authenti-
cation system divided into five subsystems: data collection, transmission,
signal processing, decision and data storage. We will consider these subsys-
tems one at a time.

1.7.1 Data Collection

Biometric systems begin with the measurement of a behavioral/physiolog-
ical characteristic. Key to all systems is the underlying assumption that the
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measured biometric characteristic is both distinctive between individuals
and repeatable over time for the same individual. The problems in mea-
suring and controlling these variations begin in the data collection
subsystem.

The user’s characteristic must be presented to a sensor. The presentation
of any biometric characteristic to the sensor introduces a behavioral (and,
consequently, psychological) component to every biometric method. This
behavioral component may vary widely between users, between applica-
tions, and between the test laboratory and the operational environment.
The output of the sensor, which is the input data upon which the system is
built, is the convolution of: (1) the biometric measure; (2) the way the mea-
sure is presented; and (3) the technical characteristics of the sensor. Both
the repeatability and the distinctiveness of the measurement are negatively
impacted by changes in any of these factors. If a system is to be open, the
presentation and sensor characteristics must be standardized to ensure
that biometric characteristics collected with one system will match those
collected on the same individual by another system. If a system is to be used
in an overt, non-cooperative application, the user must not be able to will-
fully change the biometric or its presentation sufficiently to avoid being
matched to previous records.
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Figure 1.2 shows input images from fingerprint, hand geometry and iris
recognition systems.

1.7.2 Transmission

Some, but not all, biometric systems collect data at one location but store
and/or process it at another. Such systems require data transmission. If a
great amount of data is involved, compression may be required before
transmission or storage to conserve bandwidth and storage space. Figure
1.1 shows compression and transmission occurring before the signal pro-
cessing and image storage. In such cases, the transmitted or stored com-
pressed data must be expanded before further use. The process of
compression and expansion generally causes quality loss in the restored
signal, with loss increasing with increasing compression ratio. The com-
pression technique used will depend upon the biometric signal. An inter-
esting area of research is in finding, for a given biometric technique,
compression methods with minimum impact on the signal-processing
subsystem.

If a system is to be open, compression and transmission protocols must
be standardized so that every user of the data can reconstruct the original
signal. Standards currently exist for the compression of fingerprints
(Wavelet Scalar Quantization), facial images (JPEG), and voice data (Code
Excited Linear Prediction).

1.7.3 Signal Processing

Having acquired and possibly transmitted a biometric characteristic, we
must prepare it for matching with other like measures. Figure 1.1 divides
the signal-processing subsystem into four tasks: segmentation, feature
extraction, quality control, and pattern matching.

Segmentation is the process of finding the biometric pattern within the
transmitted signal. For example, a facial recognition system must first find
the boundaries of the face or faces in the transmitted image. A speaker
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verification system must find the speech activity within a signal that may
contain periods of non-speech sounds. Once the raw biometric pattern of
interest has been found and extracted from larger signal, the pattern is sent
to the feature extraction process.

Feature extraction is fascinating. The raw biometric pattern, even after
segmentation from the larger signal, contains non-repeatable distortions
caused by the presentation, sensor and transmission processes of the
system. These non-controllable distortions and any non-distinctive or
redundant elements must be removed from the biometric pattern, while at
the same time preserving those qualities that are both distinctive and
repeatable. These qualities expressed in mathematical form are called “fea-
tures”. In a text-independent speaker recognition system, for instance, we
may want to find the features, such as the mathematical frequency relation-
ships in the vowels, that depend only upon the speaker and not upon the
words being spoken, the health status of the speaker, or the speed, volume
and pitch of the speech. There are as many wonderfully creative mathemat-
ical approaches to feature extraction as there are scientists and engineers
in the biometrics industry. You can understand why such algorithms are
always considered proprietary. Consequently, in an open system, the “open”
stops here.

In general, feature extraction is a form of non-reversible compression,
meaning that the original biometric image cannot be reconstructed from
the extracted features. In some systems, transmission occurs after feature
extraction to reduce the requirement for bandwidth.

After feature extraction, or maybe even before, we will want to check to
see if the signal received from the data collection subsystem is of good
quality. If the features “don’t make sense” or are insufficient in some way, we
can conclude quickly that the received signal was defective and request a
new sample from the data collection subsystem while the user is still at the
sensor. The development of this “quality control” process has greatly
improved the performance of biometric systems in the last few short years.
On the other hand, some people seem never to be able to present an accept-
able signal to the system. If a negative decision by the quality control
module cannot be overridden, a “failure to enroll” error results.

The feature “sample”, now of very small size compared to the original
signal, will be sent to the pattern matching process for comparison with
one or more previously identified and stored feature templates or models.
We use the term “template” to indicate stored features. The features in the
template are of the same type as those of a sample. For instance, if the
sample features are a “vector” in the mathematical sense, then the stored
template will also be a “vector”. The term “model” is used to indicate the
construction of a more complex mathematical representation capable of
generating features characteristic of a particular user. Models and features
will be of different mathematical types and structures. Models are used in
some speaker and facial recognition systems. Templates are used in finger-
print, iris, and hand geometry recognition systems.

The term “enrollment” refers to the placing of a template or model into
the database for the very first time. Once in the database and associated
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with an identity by external information (provided by the enrollee or
others), the enrollment biometric data is referred to as the template or
model for the individual to which it refers.

The purpose of the pattern matching process is to compare a presented fea-
ture sample to the stored data, and to send to the decision subsystem a quanti-
tative measure of the comparison. An exception is enrollment in systems
allowing multiple enrollments. In this application, the pattern matching pro-
cess can be skipped. In the cooperative case where the user has claimed an
identity or where there is but a single record in the current database (which
might be a magnetic stripe card), the pattern matching process might only
make a comparison against a single stored template. In all other cases, such as
large-scale identification, the pattern matching process compares the present
sample to multiple templates or models from the database one at a time, as
instructed by the decision subsystem, sending on a quantitative “distance”
measure for each comparison. In place of a “distance” measure, some systems
use “similarity” measures, such as maximum likelihood values.

The signal processing subsystem is designed with the goal of yielding
small distances between enrolled models/templates and later samples from
the same individual and large distances between enrolled models/tem-
plates and samples of different individuals. Even for models and samples
from the same individual, however, distances will rarely, if ever, be zero, as
there will always be some non-repeatable biometric-, presentation-,
sensor- or transmission-related variation remaining after processing.

1.7.4 Storage

The remaining subsystem to be considered is that of storage. There will be
one or more forms of storage used, depending upon the biometric system.
Templates or models from enrolled users will be stored in a database for
comparison by the pattern matcher to incoming feature samples. For sys-
tems only performing “one-to-one” matching, the database may be distrib-
uted on smart cards, optically read cards or magnetic stripe cards carried
by each enrolled user. Depending upon system policy, no central database
need exist, although in this application a centralized database can be used
to detect counterfeit cards or to reissue lost cards without re-collecting the
biometric pattern.

The database will be centralized if the system performs one-to-N
matching with N greater than one, as in the case of identification or “PIN-
less verification” systems. As N gets very large, system speed requirements
dictate that the database be partitioned into smaller subsets such that any
feature sample need only be matched to the templates or models stored in
one partition, or indexed by using an appropriate data structure which
allows the templates to be visited in an advantageous order during the
retrieval [61]. These strategies have the effect of increasing system speed
and decreasing false matches, at the expense of increasing the false non-
match rate owing to partitioning errors. This means that system error rates
do not remain constant with increasing database size and identification
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systems do not scale linearly. Consequently, database partitioning/
indexing strategies represent a complex policy decision [56].

If it may be necessary to reconstruct the biometric patterns from stored
data, raw (although possibly compressed) data storage will be required.
The biometric pattern is generally not reconstructable from the stored
templates or models, although some methods [41] do allow a coarse recon-
struction of patterns from templates. Further, the templates themselves are
created using the proprietary feature extraction algorithms of the system
vendor. The storage of raw data allows changes in the system or system
vendor to be made without the need to re-collect data from all enrolled
users.

1.7.5 Decision

The decision subsystem implements system policy by directing the data-
base search, determines “matches” or “non-matches” based on the distance
or similarity measures received from the pattern matcher, and ultimately
makes an “accept/reject” decision based on the system policy. Such a deci-
sion policy could be to reject the identity claim (either positive or negative)
of any user whose pattern could not be acquired. For an acquired pattern,
the policy might declare a match for any distance lower than a fixed
threshold and “accept” a user identity claim on the basis of this single
match, or the policy could be to declare a match for any distance lower than
a user-dependent, time-variant, or environmentally linked threshold and
require matches from multiple measures for an “accept” decision. The
policy could be to give all users, good guys and bad guys alike, three tries to
return a low distance measure and be “accepted” as matching a claimed
template. Or, in the absence of a claimed template, the system policy could
be to direct the search of all, or only a portion, of the database and return a
single match or multiple “candidate” matches. The decision policy
employed is a management decision that is specific to the operational and
security requirements of the system. In general, lowering the number of
false non-matches can be traded against raising the number of false
matches. The optimal system policy in this regard depends both upon the
statistical characteristics of the comparison distances coming from the
pattern matcher, the relative penalties for false match and false non-match
within the system, and the a priori (guessed in advance) probabilities that a
user is, in fact, an impostor. In any case, in the testing of biometric devices,
it is necessary to decouple the performance of the signal processing
subsystem from the policies implemented by the decision subsystem.

1.8 Biometrics and Privacy

Whenever biometric identification is discussed, people always want to
know about the implications for personal privacy. If a biometric system
is used, will the government, or some other group, be able to get personal
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information about the users? Biometric measures themselves contain
no personal information. Hand shape, fingerprints or eye scans do not
reveal name, age, race, gender, health or immigration status. Although
voice patterns can give a good estimation of gender, no other biometric
identification technology currently used reveals anything about the person
being measured. More common identification methods, such as a driver’s
license, reveal name, address, age, gender, vision impairment, height and
even weight! Driver’s licenses, however, may be easier to steal or counterfeit
than biometric measures.

Biometric measures can be used in place of a name, Social Security
number or other form of identification to secure anonymous transactions.
Walt Disney World sells season passes to buyers anonymously, then uses
finger geometry to verify that the passes are not being transferred. Use of
iris or fingerprint recognition for anonymous health care screening has
also been proposed. A patient would use an anonymous biometric measure,
not a name or Social Security number, when registering at a clinic. All
records held at the clinic for that patient would be identified, linked and
retrieved only by the measure. No one at the clinic, not even the doctors,
would know the patient’s “real” (publicly recognized) identity.

The real fear is that biometric measures will link people to personal data,
or allow movements to be tracked. After all, credit card and phone records
can be used in court to establish a person’s activities and movements. There
are several important points to be made on this issue.

Phone books are public databases linking people to their phone
number. These databases are even accessible on the Internet. Because
phone numbers are unique to phone lines2, “reverse” phone books also
exist, allowing a name to be determined from a phone number. Even if a
number is unlisted, all information on calls made from that number may
be available to law enforcement agencies through the subpoena process.
There are no public databases, however, containing biometric identifiers,
and there are only a few limited-access government databases. Five US
states have electronic fingerprint records of social service recipients
(Arizona, California, Connecticut, New York and Texas); six states (Cali-
fornia, Colorado, Georgia, Hawaii, Oklahoma and Texas) maintain elec-
tronic fingerprints of all licensed drivers3; nearly all states maintain
copies of driver’s license and social service recipient photos; the FBI and
state governments maintain fingerprint databases on convicted felons
and sex offenders; and the federal government maintains hand geometry
records on those who have voluntarily requested border crossing cards
[62]. General access to this data is limited to the agencies that collected it,
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but like credit card and phone “toll records”, this information can be
released or searched by law enforcement groups acting under court order.

Unlike phone books, however, databases of biometric measures cannot
generally be reversed to reveal names from measures because biometric
measures, although distinctive, are not unique. Fingerprint, retinal and iris
databases may be exceptions, allowing reversal if the biometric data was
carefully collected. But general biometric measures do not serve as useful
pointers to other types of data. The linking of records is always done by
unique identifiers such as Social Security and credit card numbers. Bio-
metric measures are not generally useful in this regard, even if databases
linking information to measures were to exist. For these reasons, biometric
measures are not useful for tracking the movements of people, as is already
possible using telephone and credit card numbers.

Databases of biometric images, and the numerical models or templates
derived from them, are often encrypted with the intention of inhibiting their
compromise in bulk. But compromise of individual measures cannot always
be prevented by protecting databases and transmission channels because
biometric measures, although privately owned, are sometimes publicly
observable (e.g. a photo of a person’s face can be taken with a camera or
downloaded from a web page). In general, biometric measures are not secret,
even if it might be quite complicated to acquire usable copies (e.g. a retinal
map) without the cooperation of the owner. When used for security, bio-
metric characteristics are more like public keys than private keys. Unlike
public keys, however, biometric measures cannot be revoked if stolen or
mimicked. The industry is currently working on methods for “live-ness
testing” and revocation, hoping to ameliorate these problems [63–65].

Table 1.2 summarizes the privacy issues raised by the use of biometrics.
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1. Unlike more common forms of identification, biometric measures contain no
personal information and are more difficult to forge or steal.

2. Biometric measures can be used in place of a name or Social Security number to
secure anonymous transactions.

3. Some biometric measures (face images, voice signals and “latent” fingerprints left
on surfaces) can be taken without a person’s knowledge, but cannot be linked to an
identity without a pre-existing invertible database.

4. A Social Security or credit card number, and sometimes even a legal name, can
identify a person in a large population. This capability has not been demonstrated
using any single biometric measure.

5. Like telephone and credit card information, biometric databases can be searched
outside of their intended purpose by court order.

6. Unlike credit card, telephone or Social Security numbers, biometric characteristics
change from one measurement to the next.

7. Searching for personal data based on biometric measures is not as reliable or
efficient as using better identifiers, like legal name or Social Security number.

8. Biometric measures are not always secret, but are sometimes publicly observable
and cannot be revoked if compromised.

Table 1.2 Biometrics and privacy.



1.9 The Road Ahead

Market estimates put the total hardware sales for the industry at US$6.6
million in 1990 and nearly US$200 million in 2000 [66]. Whether the next
decade will result in a similar 2500% increase will depend upon user
demand for positive identification biometrics. That demand will be created
by imaginatively created systems designed for convenience, friendliness,
cost-effectiveness and ease of use.

The use of negative identification biometrics will be fueled by govern-
ment requirements to limit citizens to a single identity in driver licensing,
social service and other civil applications [67, 68]. That demand will
require the development of stronger criteria for cost/benefit assessment,
security assurance, and privacy protection. Although we cannot predict the
future rate of growth of the industry with any certainty, we do know that
long-term growth is inevitable. With this book, we hope to stimulate fur-
ther inquiry into the technologies, applications and issues that will shape
this industry in the years to come.
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2Fingerprint Identification
Technology

Robert Allen, Pat Sankar and Salil Prabhakar

2.1 History

Archaeological evidence of the use of fingerprints to associate a person
with an event or transaction has been reported from ancient China,
Babylonia, and Assyria as early as 6,000 BC [1]. In 1686, Marcello Malpighi,
an anatomy professor at the University of Bologna, wrote in a paper that
fingerprints contained ridges, spirals and loops, but did not refer to their
possible use for identification [2]. In 1823, John Purkinji, an anatomy pro-
fessor at Breslau University published a thesis in which he discussed nine
types of fingerprint patterns; he also did not refer to the possibility of their
use for identification [3]. However, this early evidence and documentation
led researchers and practitioners to explore many uses of fingerprints,
including human identification.

2.1.1 Early Biometric Efforts

2.1.1.1 Alphonse Bertillon

Alphonse Bertillon, a Paris police department employee and son of an
anthropologist, developed a system of anthropometry in 1880 as a means
for classifying criminals and used this system to identify recidivists [4].
Anthropometry (a system of cataloging an individual’s body measure-
ments such as height, weight, lengths of arm, leg, index finger etc.) was
shown to fail in a famous case at Leavenworth Prison, where two prisoners,
both named William West, were found to have nearly identical measure-
ments even though they claimed not to be biologically related [5]. Bertillon
had theoretically calculated the probability of occurrence of such an event
as one in four million.

2.1.1.2 William Herschel

In 1856 Sir William Herschel, a British Chief Magistrate in Jungipoor, India,
used fingerprints (actually palmprints) to certify native contracts, playing
more on the superstitious beliefs of the natives than on science [6]. As his
fingerprint collection grew, Herschel came to the conclusion that finger-
prints could be used to prove or disprove identity.
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2.1.1.3 Henry Faulds

During the 1870s, Dr Henry Faulds, a British surgeon in Japan, after
noticing finger marks on ancient pottery, studied fingerprints, recognized
the potential for identification, and devised a method for classifying fin-
gerprint patterns [7]. Faulds is also credited with the first fingerprint iden-
tification of a greasy fingerprint left on an alcohol bottle. Finally, in 1880,
Faulds forwarded his classification system and method for recording fin-
gerprints to Charles Darwin, who in turn forwarded this material to his
cousin, Sir Francis Galton.

2.1.1.4 Francis Galton

Francis Galton, an anthropologist, began a systematic study of fingerprints
as a means of identification in the 1880s [8]. In 1892, he published the first
book on fingerprints, entitled Fingerprints [9]. He added scientific support
to what Herschel and Faulds suspected: that fingerprints are permanent
throughout life, and that no two fingerprints are identical (by calculating
the odds of two individual fingerprints being identical to be 1 in 64 billion).
Galton devised a system of classifying fingerprints into what are now called
“Galton pattern types”. He also identified minute fingerprint characteris-
tics (called “minutiae” and often referred to as “Galton details”) that are
used to determine whether two fingerprints match.

2.1.1.5 Juan Vucetich

In 1891, Juan Vucetich, an Argentinian police officer, began the first sys-
tematic filing of fingerprints using the Galton pattern types. In 1892,
Vucetich made his first criminal fingerprint identification in a murder
investigation, using a bloody fingerprint to prove the identity of the
murderer [1].

2.1.1.6 Edward Henry

In 1897, Sir Edward Henry, a British police officer in India, established a
modified fingerprint classification system using Galton’s observations.
This system was ultimately adopted by Scotland Yard in 1901 and is still
used in many English-speaking countries [10].

2.2 Applications of Fingerprints

2.2.1 Forensics

Fingerprints are perhaps the most widely used identifier in the field of
forensics. They are used not only to link suspects to crime scenes, but also
to link persons arrested under another name to previous arrests, identify
deceased persons (both criminal and non-criminal), and to associate per-
sons with questioned documents. For over a century, forensic applications
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have been the primary focus of fingerprint identification techniques.
Manual paper or card files have, for most of that time, provided the source
of the fingerprint data, and several classification techniques have been
used to organize these records in order to divide the search process into
sizes manageable by humans. Additional manual filing systems have been
developed to organize fingerprints lifted from crime scenes (called
“latents”) into manageable groups that may have to be manually searched
for known suspects. The cumbersome and time-consuming nature of
filing, searching and matching fingerprints manually led to efforts in auto-
mating parts of the process as computer technology became more readily
available to law enforcement agencies.

2.2.2 Genetics

As indicated in the brief historical references above, some of the early work
and observations involving fingerprints were derived from the work of
early researchers in genetics, such as Sir Francis Galton. There is a rather
large body of work tracing the genetic history of population groups
through the study of fingerprint pattern characteristics [11]. There is also
evidence of work to associate certain fingerprint characteristics with cer-
tain birth defects and diseases in an attempt to study the correlation
between these unique characteristics and a predisposition to such defects
[12]. Such studies triggered much of the work to establish the unique fin-
gerprint features (patterns, minutiae, pores) that led to the use of finger-
prints as the most reliable form of identification.

2.2.3 Civil and Commercial

The brief history of fingerprints above also indicates the early use of fin-
gerprints in associating an individual to an item or event. It is not clear
whether the very early innovators realized that fingerprints could be used
for identification or only took advantage of the fact that people readily
believed that to be so. This is not much different from the requirement over
the last 60 years for fingerprinting as a prerequisite for obtaining a driver
license in some parts of the USA, despite the inability to use the finger-
prints, except in extreme situations where a driver license number might be
known.

In more recent times, fingerprints have been applied to application/reg-
istration forms in an attempt to associate applicants with certain benefits
(welfare [13], voting, banking [14] etc.). In most of these uses, a key compo-
nent has been missing: the ability to effectively search any large fingerprint
database in a reasonable amount of time. To further complicate matters,
fingerprint image capture is done by people with little or no training in the
proper collection methods. Examination of sample fingerprint images
from such collections has shown that captured fingerprints do not contain
consistent areas of the finger. It is not uncommon to find as much as three-
quarters of the captured fingerprints to be from the tip, right or left side of
the finger rather than from the preferred “core” region at the center.
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2.2.4 Government

The most common application of fingerprint identification has been, and
still is, to associate an individual with a criminal record. Individuals
inducted into the military and those applying for a position with the gov-
ernment or a government contractor have been required to submit finger-
prints for comparison with criminal records on file at the Federal Bureau of
Investigation (FBI). Indeed, there are well over 200 million sets of such fin-
gerprint records stored in Fairmont, West Virginia (at one time in file cabi-
nets occupying several floors of an office building in Washington, DC). In
this case, all 10 fingerprints (called a “tenprint”) have been recorded for
comparison.

In many countries outside North America and Western Europe, it has
been, and still is, a common practice to capture fingerprints for all individ-
uals when they reach a certain age (e.g. 16 years) in order to issue a national
identity card. Re-registration of these individuals is required often (e.g.
every 5 years), at which time a search in the fingerprint database is made to
confirm that the individual is indeed the original applicant (for fraud pre-
vention). Traditionally, such systems have usually employed automated
searches of a name/number file and a manual comparison of the finger-
prints to confirm the identity.

2.3 Early Systems

Most of the early fingerprint identification systems were put into place in
major metropolitan areas or as national repositories. Juan Vucetich estab-
lished a fingerprint file system in Argentina in 1891, followed by Sir Edward
Henry in 1901 at Scotland Yard in England. The first fingerprint identifica-
tion system in the USA was put in place by the New York Civil Service Com-
mission in 1902, followed by a system in the New York State prison system
in 1903. At the national level in the USA, the Federal Penitentiary in Kansas
instituted a fingerprint system (with the assistance of Scotland Yard) in
1904. From 1905 to the early 1920s, the US military and many state and local
law enforcement agencies inaugurated fingerprint identification systems.

It was not until 1924, when the FBI established an Identification Division
by an act of Congress, that a criminal file based on the work done by Sir
Edward Henry was created. Over the next 47 years, the FBI manually
arranged over 200 million fingerprint records into files using the Henry
system of classification.

2.3.1 Manual Card Files

Manual fingerprint card files were usually organized by a pattern classifi-
cation system based on combination of the patterns on each of the ten fin-
gers of individuals. Two similar classification systems were developed, one
by Sir Edward Henry in the UK, and one by Juan Vucetich in Argentina. The

24 Biometric Systems



Henry system became a standard for many countries outside South
America, while the Vucetich system was used primarily in South America.
In the Henry classification system, numerical weights are assigned to fin-
gers with a whorl pattern [15]. A bin number, based on the sum of the
weights for the right hand and sum of the weights for the left hand is com-
puted to generate 1,024 possible bins. Letter symbols are assigned to fin-
gers: capital letters to the index fingers and lower-case letters to other
fingers. These are combined with the numeric code to further subdivide the
1,024 bins. Each of these pattern groupings defines bins into which finger-
print cards with the same pattern group are placed. A bin might be a folder
in a file drawer or several file drawers if it contains a common pattern
group and the file is large.

Two problems existed in manual files: first, the patterns assigned to each
finger might not be exactly the same on each occurrence of the same card;
and second, if a pattern type error was made, the search might not reach the
correct bin. In the early stages of automation, when more sophisticated
means of searching the fingerprint database became possible, the accuracy
of the manual fingerprint system was estimated to be only 75%. To further
complicate matters, the distribution of pattern types is not uniform; thus
there were a few bins that contained most of the fingerprint cards. For
example, nearly 65% of fingers have loop patterns, 30% have whorl patterns
and the remaining 5% have arch patterns. To overcome this difficulty, it was
necessary to devise secondary (and tertiary) breakdowns of the bin num-
bers to subdivide the large bins. Although this aggravated the error possi-
bilities alluded to above, it made the search more tractable for large files.

While the reliability of the search could be compromised by the factors
mentioned above, the selectivity of a search using the binning system
developed by Henry and Vucetich was a big improvement over not using
bins at all. However, in the case of arch patterns, the bin was not subdivided
through any of the breakdown schemes used for whorls and loops. As a
result, this bin could become arbitrarily large as the file grew. Thus, in a
large file, a search for a record containing arch patterns on all fingers could
be very difficult. As with many such indexing schemes, there is a trade-off
between selectivity and reliability in a system that reduces manual
searching effort (which has its own inherent errors). The method of
indexing fingerprints using the Henry/Vucetich method introduces many
errors through the often complicated rules for assigning primary, sec-
ondary and tertiary labels to fingerprints. In practice, these errors can be
minimized through rigorous training of human indexers in order to benefit
from the increased search efficiency.

2.3.2 Classification

Fingerprint classification systems based upon the work of Vucetich and
Henry generally recognize fingerprint patterns as being loops (left or
right), whorls and arches. Figures 2.1(a)–(d) show these four basic finger-
print pattern types, which form the basis of most fingerprint classification
systems. Broadly defined, the patterns are differentiated based on the
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presence of zero, one or two delta regions. A delta region is defined by a tri-
radial ridge direction at a point. There are transitional patterns between
these three that have been used to define further subdivision of fingerprint
records. Arch patterns have no delta, loops have one delta, and whorls have
two deltas. Transitions from arches to loops occur for small loops and give
rise to the so-called tented arch pattern that appears as a notable cusp to the
arch. Loop patterns have a single delta and tend to transition to the plain
whorl through patterns such as the central pocket loop (C-Whorl) and the
twinned loop (D-Whorl), as seen in Figures 2.1(e) and (f). Whorl patterns
are characterized by two deltas. This is clearly evident in the plain whorl
and double loop whorl, but not so evident in the central pocket whorl pat-
tern. In many instances, the classification decision requires the application
of a topological test to determine whether there is a true re-curve, as neces-
sary for a loop, or a delta present to support a whorl pattern. As the files
become larger, it becomes necessary to further subdivide these basic pat-
terns using ridge tracings and/or ridge counts in order to maintain reason-
ably sized bins. The details of these further subdivisions are interesting to
understand, but beyond the scope of this chapter.

As computers were introduced into the fingerprint identification process
[16], it became desirable to revise some of the pattern subdivisions to make
the search more effective. Initially, the alphanumeric Henry system of clas-
sification was converted to a numeric model that encoded alphanumeric
pattern symbols to numeric form, for both primary and subordinate classi-
fications. Also, since computers could quickly search a database indexed by
fingerprint classification and return record identification numbers, the
manual files could be organized by identification number rather than pat-
tern classifications. In this way, some of the search error could be mini-
mized. However, the reliability of the manual classifications that were
assigned over many years of operation remained questionable. Simply
transcribing the manual codes to more computer-friendly codes had the
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Figure 2.1 Some of the common fingerprint types. The core points are marked with solid white
circles while the delta points are marked with solid black circles.



potential to eliminate the manual search and filing errors (probably the
more significant component), but did not offset the original pattern type
assignment errors.

2.3.3 Searching

Searching of a fingerprint database typically involved the use of the finger
patterns, subordinate breakdown (ridge counts/tracings) for loops and
whorls, and alternate patterns for those fingers that had patterns that
might be seen as one of several possibilities. Further, if the subordinate fea-
tures might assume a range of possible values, the various combinations
would need to be searched as well. Many agencies established policies lim-
iting the possible alternate values allowed (for labor considerations), and
the alternate patterns themselves might be suspect, leading to inaccuracy.
At some level, if the comparison of fingerprints was to be done manually,
the resulting search needed to be restrictive enough to ensure an accurate
fingerprint feature comparison. If the number of search candidates were
too large, then the potential for human error in comparison would rise. A
compromise had to be reached that allowed for searches to be conducted in
a reasonable time with a reasonable level of accuracy. As the search param-
eter became indexed by computers, searching became less error-prone, but
not completely error-free [17].

2.3.4 Matching

Fingerprint matching prior to automation involved the manual examina-
tion of the so-called Galton details (ridge endings, bifurcations, lakes,
islands, pores etc., collectively known as “minutiae”). Prior to the late
1960s, neither the available computer systems that could display finger-
print images for comparison were affordable, nor a significant number of
digital fingerprint images were available for display. Consequently, the
comparison process was manual, requiring a magnification glass for com-
paring the features of each search print to each of the many candidate
prints manually retrieved from the database files. If the correct record
could be retrieved from the files, it was fairly likely that the comparison
process would identify the individual. It was very unlikely that an incorrect
identification would be made because the fingerprint-matching techni-
cians were rigorously trained and faced sanctions/penalties if they made
any errors. However, it was possible that the correctly matching file record
would not be retrieved (and thus not identified) because of incorrect classi-
fication of the search record, or an incorrectly filed original record.

2.4 Early Automation Efforts

By the mid-1960s, it become apparent to agencies with large fingerprint
files and increasing workloads that some form of automation was required
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to keep labor costs within reasonable bounds. It was also apparent
(although to a lesser extent) that the inaccuracy of the manual systems was
an important performance limitation, especially in large fingerprint files. It
was becoming clear to those agencies that measured the identification
error rates of their systems that classification assignment and search were
significant sources of error that increased as the file size and search
workload grew.

2.4.1 US NBS/NIST Research

In the mid-1960s, the National Institute of Standards and Technology
(NIST) (known as the National Bureau of Standards at the time) initiated
several research projects to automate the fingerprint identification pro-
cess. These efforts were supported by the Federal Bureau of Investigation
(FBI) as part of an initiative to automate many of the processes in the
Bureau. The NIST looked at automatic methods of digitization of inked fin-
gerprint images, the effect of image compression on fingerprint image
quality, classification, extraction of Galton features, and matching of fin-
gerprints (tenprint-to-tenprint and latent-to-tenprint) [17]. The results of
these efforts, together with a collaboration/interaction with private
industry and national agencies (e.g. the Scientific Research and Develop-
ment Branch and the Home Office in the UK), led to important
implementation of this core technology.

2.4.2 Royal Canadian Police

By the mid-1960s, the fingerprint collection of the Royal Canadian
Mounted Police (RCMP) had grown to over a million tenprint records.
Their identification workload was increasing, as was the need to keep labor
costs in check. They investigated the technology available to automate the
search process in their tenprint identification section and ultimately
selected an automated video tape-based filing system that was already in
use in other industries (e.g. railroads and insurance).

The video file system, manufactured by Ampex Corporation, featured a
digital track on a two-inch commercial video tape that could be searched
by a minicomputer. A complex video disk buffering of search data and dis-
play stations capable of presenting single fingerprint images for compar-
ison made it possible to display the record images selected by a
classification-based search of the video tapes. The video-file system was
operational until the mid-1970s, when the RCMP installed the first auto-
mated fingerprint identification system (AFIS).

2.4.3 FBI

In the USA, at about the same time that the RCMP and the UK Home Office
were looking for automation technologies, the FBI was investigating the
possibilities for automating various Identification Division processes,
including the fingerprint identification operations. The identification
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operations received requests to match about 25,000 tenprints daily, had a
criminal fingerprint file of over 20 million tenprint records, and employed
several thousand people to handle the daily workload.

In the mid-1960s, the FBI signed research contracts with three compa-
nies to build a working prototype for scanning FBI fingerprint cards. By the
early 1970s, the prototypes were completed and evaluated for their capabil-
ities. A small-scale test resulted in the selection of one design approach and
a contract was awarded to build five production card readers to begin the
digitization of the tenprint files.

Over the next five or six years, the FBI worked with the computer
industry to build other core technologies, including fingerprint matching
hardware and automated classification software and hardware, and began a
broad-based program to automate several manual functions within the fin-
gerprint identification section. This plan ultimately resulted in an auto-
mated tenprint card-handling system, with functional workstations to
support the manual data entry, classification, validation and completion of
result response.

Study of the automation process continued and system designs were
developed for what would become the next stage of fingerprint automation
at the FBI. By the end of 1994, competition for the Integrated Automated
Fingerprint Identification System (IAFIS) basic demonstration model was
completed. Model systems had to demonstrate the ability to meet the per-
formance requirements defined for the system. By the end of 1995,
Lockheed Martin Corporation was selected to build the IAFIS, and by 1999
the major components were operational.

2.4.4 United Kingdom

In the UK, over about the same time-scale as the FBI, the Home Office was
working within its own Scientific Research and Development Branch
(SRDB), and in cooperation with the computer industry to develop tech-
nology to automate fingerprint processing. The Home Office directed its
attention to the design of the algorithms and processes that were needed
by the National Police Service (NPS) to automate tenprint processing
nationally. At the same time, the Metropolitan Police Service, located at
New Scotland Yard, directed attention to latent fingerprint processing,
and initially working with Ferranti Ltd, developed a prototype latent
encoding and search system. The resulting system provided the finger-
print data entry capability, the encoding of minutiae data for selected
tenprint file entries, and the search and matching of fingerprints to iden-
tify candidates.

The technology developed through these efforts was eventually incorpo-
rated into the model for the National Automated Fingerprint Identification
System (NAFIS) constructed by the SRDB. Several technologies for the
core algorithms were investigated, including not only simulation, but
also implementation into a specific hardware realization. To support these
efforts, SRDB carried out substantial development internally and contracted
with several software houses in the UK to carry out the programming and
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utilizing. For example, the Transputer parallel processing array was evalu-
ated to serve as the execution engine for a variety of tasks. As a result of the
simulation, research and implementation studies, when the NAFIS project
was ready for tender there already existed a great deal of quantitative data on
the requirements of performance and response times and the desired char-
acteristics of the human–machine interfaces.

2.4.5 Japan

At about the same time as interest began to build in the USA and the UK for
the automation of the manual fingerprint processes in the national reposi-
tories, the Japanese National Police (JNP), who had a fingerprint file of over
six million records, also initiated study of the automation possibilities. JNP
posted its technical people to collaborate with researchers at the FBI and
the Home Office on the details of the processing required. The system ulti-
mately developed for the national police contained many of the concepts
included in both the USA and UK efforts.

2.5 The Technology

Certain essential components that are required for the automation of fin-
gerprint searching and matching were already employed by the US military
as a part of both defensive and offensive weapons systems. For example,
imaging devices capable of resolving small objects in a large field were
already in use to identify and classify potential targets. Methods had been
developed for recognizing different signatures of potential targets using
both spatial and frequency domain techniques for separating the signal
from the background clutter. It was natural to look to the organizations
developing these image processing-based military applications for solu-
tions in the application of fingerprint matching. A catalyst for this process
was found in the Law Enforcement Assistance Administration (LEAA),
which was formed in the early 1970s to infuse automation technology into
law enforcement organizations. Through grants and contracts, LEAA
(1968–1977) funded a number of research programs to investigate tech-
niques that could be applied to fingerprint automation projects together
with other operational aspects of the law enforcement.

2.5.1 Scanning and Digitizing

One of the most important elements needed for fingerprint automation
was a method for scanning inked fingerprint forms/cards that would pro-
vide images of sufficient quality for subsequent enhancement, feature
extraction and matching. The FBI initiated a research program to build an
engineering model of a scanner that could sample an object area of 1.5 ×
1.5 in at 500 pixels per inch (often called DPI), with an effective sampling
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spot size of 0.0015 in, with a signal-to-noise (S/N) ratio in excess of 100:1,
and digitized to at least 6 bits (64 gray levels). In the late 1960s, these
requirements could only be met by a system that used a cathode ray tube
and a precision deflection system, an array of photomultiplier tubes to
measure the incident and reflected light, and an amplifier–digitizer to con-
vert the electrical signal into a digital value for each pixel. Further, this
system needed to scan the objects (i.e. fingerprint cards) in complete dark-
ness (a light-tight enclosure). Three companies were selected to build these
engineering models to demonstrate the capability to scan, process and
extract minutiae features from an example set of fingerprint cards.

Based on an evaluation of these three competing engineering models, the
supplier of the best model was selected to build a prototype of a fingerprint
card scanner capable of transporting fingerprint cards to and through the
scanner and of processing and extracting features from the captured dig-
ital images. This device was successfully built, delivered and tested by the
FBI in the early 1970s. This prototype formed the basis of a contract to
build at least five such scanning and data capture systems, each capable of
scanning and extracting data from 250 tenprint cards per hour. These five
scanning systems were operational by 1978 and began digitizing the 22 mil-
lion record tenprint files that existed at the FBI at that time. One of the
major drawbacks of this system was that the fingerprint cards had to be
transported into a light-tight area during scanning, and in the event of a
problem manual intervention was not possible.

There were relatively few scanning devices by the late 1970s that met the
technical characteristics requirements of 500 DPI, a 0.0015 inch effective
sample size, greater than 100 S/N ratio and 6 bit dynamic range. Further,
almost all of these scanners were analog devices. A few digital cameras
were available that used analog sensors to produce a digital output, but it
was not until the early 1980s that relatively low cost digital scanners
capable of scanning fingerprints at the required resolution and quality
became available. It was another ten years before the scan quality standards
were clearly articulated in the IAFIS Appendix F specification, which is the
current benchmark for scanning and digital capture of fingerprint images
[18]. The most notable change brought about by the Appendix F specifica-
tion is the gray-scale range requirement of 200 or more gray levels, with no
missing values, for a broad range of input inked fingerprint card samples
(extremely light to extremely dark). In fact, this requires that a scanner is
able to scan and digitize some fingerprint cards at greater than 8 bits and
then compress to an 8-bit dynamic range to satisfy this specification.

Today, there are reasonably priced scanners (under US$10,000) that are
capable of scanning a 1.5 × 1.5 inch fingerprint area at 1,000 (or more) DPI
with a digitizing range of 10 or 12 bits, S/N ratio in excess of 100:1, and dig-
ital controls to extract the desired data range. However, these days there is a
trend to move away from capturing fingerprints on paper using ink or
other such media. Most of the fingerprint input devices now used in both
criminal and civil fingerprint systems directly scan the fingerprint from
the finger. These scanners are called “live-scan” fingerprint capture
devices. The most common types of live-scan fingerprint devices either

Chapter 2 · Fingerprint Identification Technology 31



directly digitize the fingerprint image (by electronically scanning a planar
array of samples) or digitize the fingerprint image created through optical
means (frustrated total internal reflection – FTIR). Many of these live-scan
fingerprint devices are capable of capturing digital data at the quality
levels established by the IAFIS Appendix F specification. If a paper copy of
the fingerprints is required, the fingerprint images can be printed. The FBI
specifies fingerprint image quality for paper copy submissions to them.

The most recent American National Standards Institute (ANSI) standard
for fingerprint data interchange recommends 1,000 DPI resolution to yield
greater definition of minute fingerprint features [19]. Apart from the
obvious issue of the large size of the resulting image files, there are many
other issues related to such high-resolution imaging of fingerprints (e.g.
how to design subsequent image processing algorithms to take advantage
of this high-resolution data).

For many civil and commercial applications, there is no mandate for a set
of ten fingerprints for each individual to be recorded by the system. Often,
it is sufficient for the scanning device to capture a fingerprint from a single
finger. Moreover, it is not necessary to capture a fingerprint image rolled
across the finger from one side of the fingernail to the other. In fact, cap-
turing a “dab” (or “flat”) impression of 1 in2 (or even lesser) area of the
finger is quite acceptable. There are many fingerprint sensors available
today that capture areas substantially less than 1 in2 (even down to 0.25 in2)
of a single finger. Many of these scanners sample fingerprints at less than
the 500 DPI that is mandated for forensic uses by the IAFIS specifications.
Indeed, there is not yet a set of specifications articulated for finger scanners
in civil or commercial applications as there is for criminal applications. It
may well be that the device manufacturers will ultimately be required to
address the issue of a common specification for fingerprint image quality
for live-scan devices in these applications. A more likely possibility is that
the environment of these applications will drive the manufacturers to meet
certain minimum scanner quality specifications in order to meet the
performance and interchangeability goals.

In many cases, the live-scan finger scanning devices are implemented
using optical (FTIR and scattering) techniques, using planar fabrication
techniques to build capacitor arrays (various semiconductor charge
transfer techniques) and ultrasound transducers. The optical and ultra-
sound devices generally capture larger areas of the fingerprint, but the
optical devices often suffer more from inconsistent contact (dry finger)
problems over a large sample of people than do the ultrasound devices. The
planar devices capture a substantially smaller area and have more resis-
tance to contact problems, but may have environmental/usability problems
(wear or damage) due to surface fabrication issues that are not yet fully
understood. Only extensive use and testing will resolve the advantages and
disadvantages of these competing designs. However, there is growing evi-
dence that live-scan fingerprint scanning devices will play a leading role in
many automatic civil and commercial applications as a way to certify an
individual’s identity.

32 Biometric Systems



2.5.2 Enhancement

A fingerprint image is shown in Figure 2.2. A ridge bifurcation minutia is
marked with a circle, and a ridge ending minutia is marked with a square.
Ridge bifurcations and endings represent the two types of local fingerprint
singularities used by modern AFIS implementations. To show the finger-
print singularities at the global level in this fingerprint image, the core
point is marked with an octagon and the delta is marked with a triangle.
Traditionally, ridge count is described as the number of ridges between the
core and the delta, that is, along the solid line marked on the fingerprint
image. More recently, the definition of the ridge count has been extended to
the number of ridges between any two points (typically minutiae) in the
fingerprint images.

A crucial element in the processing of digital fingerprint data is the
enhancement of the ridge structure to allow accurate extraction of minute
features. Figure 2.3(a) is an example of an inked fingerprint that has both
good and poor quality areas that must be dealt with during the enhance-
ment process. The histogram of gray levels for this image is shown in Figure
2.4(a) (gray value 0 is at the left and gray value 255 is at the right in this his-
togram). It is apparent that the predominant gray range is somewhat more
than 128 gray values. Initial enhancement may involve the normalization of
the inherent intensity variation in a digitized fingerprint caused either by
the inking (as in this case) or the live-scan device. One such process – local
area contrast enhancement (LACE) – is useful to provide such normaliza-
tion through the scaling of local neighborhood pixels in relation to a calcu-
lated global mean. The form of LACE used here calculates a global pixel
mean (GlobalMean) for the entire image, and then computes a local mean
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and variance for a 15 × 15 neighborhood about each pixel (building a table
of statistics over the entire image). A pixel gain is calculated as indicated
below, and subjected to the constraints10 50. .≤ ≤PixelGain :

PixelGain GlobalGain LocalVariance= ×( / )1 (2.1)

The GlobalGain factor is calculated using the GlobalMean and a
GlobalCorrection factor which is determined for fingerprint images empir-
ically (a typical value could be 0.5). This calculation is as follows:

GlobalGain = GlobalCorrection × GlobalMean (2.2)

A new intensity for each original pixel (RawPixel) of the image is calculated
using the PixelGain and LocalMean as follows:

NewIntensity = PixelGain × (RawPixel − LocalMean) + LocalMean (2.3)
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Figure 2.3 (a) An inked fingerprint image; (b) the results of the local area contrast enhancement
algorithm on (a).
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Figure 2.4 (a), (b): Histograms of fingerprint images in Figures 2.3(a) and (b), respectively.



Figure 2.3(b) shows an example of the application of LACE to the image
in Figure 2.3(a). The histogram for the image after the enhancement is
shown in Figure 2.4(b). Note that the gray range now spans the full 256 gray
values, with a mean value near 128. By comparing Figure 2.3(b) with Figure
2.3(a), one can clearly see a marked increase in contrast over the entire
image.

Another type of enhancement that can be used to preprocess fingerprint
images is contextual filtering [20, 21]. This type of enhancement has the fol-
lowing objectives: (1) provide a low-pass (averaging) effect along the ridge
direction with the aim of linking small gaps and filling impurities due to
pores or noise; and (2) perform a bandpass (differentiating) effect in a
direction orthogonal to the ridges to increase the discrimination between
ridges and valleys and to separate parallel linked ridges. Often, Gabor fil-
ters [22] are used for this type of contextual filtering. Gabor filters have
both frequency-selective and orientation-selective properties and have
optimal joint resolution in both spatial and frequency domains. Conse-
quently, these filters have the ability to minimize the bandwidth required
while maximizing the spatial resolution. An even symmetric two-dimen-
sional Gabor filter has the following form [20] (see Figure 2.5):
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where θ is the orientation of the filter and [xθ, yθ] are the coordinates of
[x, y] after a clockwise rotation of the Cartesian axes by an angle of
(90° – θ):
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In the above expression, f is the frequency of a two-dimensional sinusoidal
surface of the fingerprint, and σx and σy are the standard deviations of the
Gaussian envelope along the x- and y-axes respectively. As shown in Figure
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Figure 2.5 Graphical representation (lateral view and top view) of the Gabor filter defined by the
parameters θ = 135°, f = 1/5, σx = σy = 3 [21].



2.5, a Gabor filter is defined by a sinusoidal wave (the second term of Equa-
tion (2.4)) tapered by a Gaussian (the first term in Equation (2.4)).

To contextually filter a fingerprint image using Gabor filters, the four
parameters (θ, f, σx, σy) must be specified. Obviously, the frequency, f, of the
filter is completely determined by the local ridge frequency, and the orien-
tation, θ, is determined by the local ridge orientation. The selection of the
values σx and σy involves a trade-off. The larger the values, the more robust
the filters are to the noise in the fingerprint image, but are also the more
likely they are to create spurious ridges and valleys. Conversely, the smaller
the values, the less likely the filters are to introduce spurious ridges and val-
leys, but they are then less effective in removing the noise. In fact, from the
Modulation Transfer Function (MTF) of the Gabor filter, it can be shown
that increasing σx, σy decreases the bandwidth of the filter and vice versa.

The simplest and most natural approach for extracting the local ridge
orientation field image, D, containing elements θij, in a fingerprint image is
based on the computation of gradients in the fingerprint image. The gra-
dient ∇(xi, yj) at point [xi, yj] of fingerprint image I, is a two-dimensional
vector [∇x(xi, yj),∇y(xi, yj)], where ∇x and ∇y components are the deriva-
tives of I in [xi, yj] with respect to the x and y directions, respectively. It is
well known that the gradient phase angle denotes the direction of the max-
imum pixel-intensity change. Therefore, the direction θij of a hypothetical
edge which crosses the region centered at [xi, yj] is orthogonal to the gra-
dient phase angle at [xi, yj]. This method, although simple and efficient,
does not provide robust estimates of local ridge orientation in fingerprint
images. As a result, an alternative method is used to compute the local ridge
orientations as the dominant ridge orientation θij by combining multiple
gradient estimates within aW W× window centered at [xi, yj] [20]:
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where ∇x and ∇y are the x and y gradient components computed through
3 × 3 Sobel masks. In fact, it can be shown that this method is mathemati-
cally equivalent to the principal component analysis of the autocorrelation
matrix of the gradient vectors [23]. Usually, the orientation image is further
smoothed (low-pass filtered) to eliminate any false local estimates of fin-
gerprint ridge orientations. Figure 2.7(a) shows the estimated orientation
field of the fingerprint image shown in Figure 2.3(b).
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The local ridge frequency (or density) fxy at point [x, y] is the inverse of
the number of ridges per unit length along a hypothetical segment centered
at [x, y] and orthogonal to the local ridge orientation θxy. A frequency
image F, analogous to the orientation image D, can be defined if the fre-
quency is estimated at discrete positions and arranged into a matrix [21].
The local ridge frequency varies across different fingers, and may also vary
noticeably across different regions in the same fingerprint. The ridge pat-
tern can be locally modeled as a sinusoidal-shaped surface, and the varia-
tion theorem can be exploited to estimate the unknown frequency [24]. The
variation V of a function h in the interval [x1, x2] is the amount of “vertical”
change in h:

V h
h x

x
x

x

x

( )
( )

= ∫
d

d
d

1

2

(2.7)

If the function h is periodic at [x1, x2] or the amplitude changes within
the interval [x1, x2] are small, the variation may be expressed as a function
of the average amplitude αm and the average frequency f (see Figure 2.6):

V h x x fm( ) ( )= − ⋅ ⋅2 1 2α (2.8)

Therefore the unknown frequency can be estimated as:

f
V h

x x m
=

⋅ − ⋅
( )

( )2 2 1 α
(2.9)

In a practical method based on the above theory, the variation and the
average amplitude of a two-dimensional ridge pattern can be estimated
from the first- and second-order partial derivatives and the local ridge fre-
quency can be computed from Equation (2.9).

Once the local orientation image, D, and the local ridge frequency image,
F, have been estimated, the fingerprint image (shown in Figure 2.2(b)) can
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Figure 2.6 The variation of the function h in the interval [x1, x2] is the sum of amplitudes α1,α2, ...
α8 [24]. If the function is periodic or the function amplitude does not change significantly within
the interval of interest, the average amplitude αm can be used to approximate the individual α.
Then the variation may be expressed as 2αm multiplied by the number of periods of the function
over the interval [21].



be contextually filtered using the Gabor filters as in Equations (2.4) and
(2.5), resulting in an enhanced image (shown in Figure 2.7(b)).

An enhancement algorithm built upon a model of fingerprint structure can
be useful for the enhancement of fingerprints, but it is also important to
understand that there are some non-fingerprint properties of digitized finger-
print images that need to be dealt with. The first is that inked fingerprint
images may have variations in intensity due to the inking process. The ink may
be absent or less dense in some areas or over the entire print. The fingerprint
image may also have smudges (blobs) in some areas or over the entire print
due to excessive ink. Similarly, live-scan fingerprint images may not always
contain an impression of a real finger, but may contain a latent image of a pre-
vious impression (e.g. oils left on the surface of the scanner) or a three-dimen-
sional artificial replica of a fingerprint. Consequently, inked fingerprints may
need different enhancement schemes than live-scanned images. The enhance-
ment process must neither be so aggressive that any variation of gray-scale is
assumed to be caused by the finger ridge structure (e.g. at extremely low S/N
ratios) nor too weak to handle the imaging non-uniformity often found in
inked fingerprints. The goal is always to produce an enhanced image that does
not contain artificially generated ridge structure that might later generate
false minutiae features, while capturing the maximum available ridge struc-
ture to allow detection of true minutiae. Adapting the enhancement process to
the fingerprint capture method will yield the optimal matching performance
over a large collection of fingerprints.

A fingerprint may contain such poor quality areas that the local ridge
orientation and frequency estimates are completely wrong. An algorithm
that can reliably locate (and mask) these extremely poor quality areas is
very useful for the feature detection and recognition stages by preventing
false or unreliable features from being created [20].

2.5.3 Feature Extraction

Enhancement generally results in an image that is ready to be converted to
a binary value at each pixel. For inked or optically live-scanned prints, the
ridge width will likely be several black pixels and the valleys several white
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Figure 2.7 The orientation field is superimposed on the fingerprint image in (a). In (b), the result
of the Gabor filters-based contextual filtering of the fingerprint image in Figure 2.3(a) is shown.



pixels. Some solid state live-scan devices reverse the “polarity” of the
image, yielding white ridges and black valleys.

In feature extractors found in the early systems, different types of minu-
tiae features (e.g. ridge ending, bifurcation, and additional types such as
island and dot) were often characterized by the use of models. This
required an assignment of all possible minutiae features to a model or
models, and required subsequent manual editing to resolve the multiple
possibilities for a single minutia feature. Feature extraction that depends
upon models of all possible configurations for minutiae must necessarily
be a compromise, since as the number of fingerprints becomes large, the
possible minutiae shapes and details become ever more complex. The com-
promises result in many true minutiae missed and false minutiae detected.
Instead of working directly with the enhanced image, a better approach
may be to deal with the fingerprint image after ridges have been symmetri-
cally thinned about the ridge centerline.

The enhanced image shown in Figure 2.7(b) is first binarized (i.e. setting
ridge pixels to 1 and valley pixels to 0; see Figure 2.8(a)) and then uniformly
thinned to a single pixel width about the ridge centerline (see Figure
2.8(b)). Binarization can either be achieved simply by thresholding the
image in Figure 7b or by using more sophisticated ridge location algo-
rithms [25]. The central idea of the thinning process is to perform succes-
sive (iterative) erosions of the outer-most layers of a shape until a
connected unit-width set of lines (or skeletons) is obtained. No mathemat-
ical definitions exist for the thinning process, leading to a wide range of
approaches proposed in the literature. The skeletal image shown in Figure
2.8(b) was created using a method defined by Rosenfeld [26]. Rosenfeld’s
method examines a 3 × 3 pixel neighborhood to decide whether the center
pixel (P1) should be black (indicating a ridge) or white (indicating a
valley). Figure 2.9 illustrates the four conditions under which P1 would be
considered as sitting on a ridge. The shading in Figure 2.9 indicates the
location of black pixels in the image.

Neighborhoods for ridge end points are also defined (see Figure 2.10).
There are also definitions for isolated points where none of the neighbors
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(a) (b)

Figure 2.8 (a) shows the result of binarization (through the ridge location algorithm of [25]) of
the enhanced fingerprint image in Figure 2.7(b). (b) shows the results of thinning the image in (a)
to a single pixel width.



of P1 is black. The 3 × 3 analysis kernels are applied to a binary image along
rows and by columns (in a raster-scan fashion), and a decision is made
whether to change the center pixel (P1) from black to white for simply con-
nected, not isolated nor end point, P1s. By systematically applying these
region definitions to a binary image to decide whether a pixel should be
white or black, a thinned, single-pixel-width ridge structure is created. The
order of application needs to be consistent, alternating from top to bottom
to left to right to produce a thinned image centered on the original image.
Usually some editing is required to remove short “whiskers” generated by
the thinning process on certain two-dimensional structures. Additionally
there is often a need to introduce some filling definitions to handle the
existence of pores in fingerprint images. Pores are background white pixels
surrounded by black ridge pixels in a binary image. When eroded by thin-
ning, these pores can produce enclosed white regions of significant size
such that they may be (falsely) detected as minutiae. Elimination of as
many of these pore regions as possible before minutiae detection makes it
easier to edit the final minutiae set.

Once the skeletal image is created, a minutiae detection stage can analyze
this image using another set of 3 × 3 kernels to identify ridge ending or
bifurcations points as minutiae. A ridge-ending minutia is indicated if only
one pixel element, P2–P9, is black. A bifurcation minutia has three neigh-
boring black pixels, as illustrated in Figure 2.11.

Although the process is simple in principle, false structures, resulting
from imperfect restoration of ridge detail, pores or other anomalies created
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Figure 2.9 Center pixel (P1) is determined to be on a ridge during thinning.
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Figure 2.10 Center pixel (P1) is determined to be at the end of a ridge during thinning.
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Figure 2.11 Center pixel (P1) is determined to be a ridge bifurcation minutia during minutiae
detection.



by aggressive enhancement, must be detected and eliminated. This may be
accomplished as part of the initial validation of the detected minutia or in
post processing [21]. Initial validation considers, for example, whether the
ridge length running away from the minutia point is sufficient, or if the
ridge direction at the point is within acceptable limits. Post processing
might include an examination of the local image quality, neighboring
detections or other indicators of non-fingerprint structure in the area. Fur-
ther, the image can be inverted in gray-scale, converting white to black and
black to white. Reprocessing of this inverted image should yield minutiae
endings in place of bifurcations and vice versa, allowing a validity check on
the previously detected minutiae. The final detected minutiae are those
that meet all of the validity checks. Figure 2.12 shows the minutiae detected
on the fingerprint image shown in Figure 2.3(a) by using the techniques
described in this section.

Certain minutiae extraction algorithms work differently and detect the
minutiae directly in the gray-scale fingerprint image [21, 27]. Once a vali-
dated set of minutiae is determined, additional feature data such as minu-
tiae confidence, ridge counts between minutiae, ridge count confidence,
core and delta locations, etc. can be determined. These additional features
may be useful to achieve added selectivity from a minutiae matching pro-
cess. Their usefulness for this purpose may be mediated by the confidence
associated with each such feature. Therefore it is important to collect confi-
dence data as a part of the image enhancement and feature extraction pro-
cess to be able to properly qualify detected minutiae and associated
features.

2.5.4 Classification

In some system implementations, fingerprint pattern classification (such
as loop , arch, whorl) is done automatically, and is used as a selector for
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Figure 2.12 The detected minutiae features are superimposed on the original inked fingerprint
of Figure 2.3(a) for display.



candidate records in a search. Submitted samples need only be compared to
database records with the same classification. Such automatic classifica-
tion of fingerprint patterns is not perfect (the state-of-the-art classifica-
tion algorithms have an accuracy of about 99% [28]), and sometimes
requires manual confirmation. Errors occur when truly matching prints
are given different classifications. Such errors increase the system’s false
non-match rate.

Fingerprint pattern classification can be determined in several ways:
explicitly characterizing regions of a fingerprint as belonging to a partic-
ular shape; or through implementation of one of many possible generalized
classifiers (e.g. artificial neural networks) trained to recognize the speci-
fied patterns. The singular shapes (e.g. cores and deltas) in a fingerprint
image are typically detected using the Poincaré method [29, 30] on the fin-
gerprint orientation image, D, as follows.

Let G be the vector field associated with a fingerprint orientation image
D (note that a fingerprint orientation image is not a true vector field since
its elements are unoriented directions, but it can be converted to a pseudo-
vector field by multiplying the orientation values by 2 [31]) and let [i, j] be
the position of the element θij in the orientation image; then the Poincaré
index PG, C(i, j) at [i, j] is computed as follows:

� the curve C is a closed path defined as an ordered sequence of some ele-
ments of D, such that [i, j] is an internal point

� PG, C(i, j) is computed by algebraically summing the orientation differ-
ences between adjacent elements of C. Summing orientation differences
requires a direction (among the two possible) to be associated at each
orientation. A solution to this problem is to randomly select the direc-
tion of the first element and assign the direction closest to that of the pre-
vious element to each successive element. It is well known and can be
easily shown that, on closed curves, the Poincaré index assumes only one
of the discrete values: 0°, ±180° and ±360°. In the case of fingerprint
singularities:

P i j

i j
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[ , ]
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Figure 2.13 shows three portions of orientation images. The path defining
C is the ordered sequence of the 8 elements dk (k = 0..7) surrounding [i, j].
The direction of the elements dk is chosen as follows: d0 is directed upward;
dk (k = 1..7) is directed so that the absolute value of the angle between dk and
dk–1 is less than or equal to 90°. The Poincaré index is then computed as:

P i j angleC k k
k

G d d, ( )
..

( , ) ( , )= +
=
∑ 1 8

0 7
mod (2.11)
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The explicit (rule-based) fingerprint classification systems first detect
the fingerprint singularities using the above method and then apply a set of
rules (e.g. arches have no loops and deltas, tented arches and loops have one
core and one delta, and whorls have two loops and two deltas etc.) to deter-
mine the pattern type of the fingerprint image. The most successful gener-
alized (e.g. artificial neural network-based) fingerprint classification
systems utilize a combination of a number of different classifiers [21].

The effort to validate patterns during fingerprint image capture, and
automate their entry into the system, is substantially less than the proce-
dures required for manual systems. The use of fingerprint pattern informa-
tion can be an effective means to limit the volume of data sent to the
matching engine resulting in benefits in both the system response time and
the false-match error rate.

2.5.5 Matching

Automatic fingerprint matching has been in operational use in criminal
AFIS applications since the late 1970s. Running routine searches to identify
criminals associated with a particular crime scene without known suspects
is now possible with the help of AFIS. In many ways, automatic fingerprint
matching only accomplishes what a fingerprint technician would do, but
accomplishes it much faster and more effectively. Prior to the development
of AFIS technology, many police agencies did not routinely search crime
scene fingerprints because of the labor required. Only the most serious
crimes were subjected to a search for candidates from the criminal finger-
print file. With automatic matching, it is possible to search for records
without a suspect in mind, and to do this with far less labor in a matter of
minutes rather than days or weeks.

Automatically matching fingerprint minutiae sets is a difficult pattern
recognition problem, mainly due to the large variability in different
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Figure 2.13 Example of computation of the Poincaré index in the 8-neighborhood of points
belonging (from the left to the right) to a whorl, loop and delta singularity, respectively. Note that
for the loop and delta examples (center and right), the direction of d0 is first chosen upward (to
compute the angle between d0 and d1) and then successively downward (when computing the
angle between d7 and d0) [21].



impressions of the same finger (i.e. large intra-class variations). The main
factors responsible for the intra-class variations are as follows (note that
“sensor” is used as a collective term for ink, live-scan and latent imaging):

� Displacement: the same finger may be placed at different locations on the
sensor during different acquisitions, resulting in a (global) translation of
the fingerprint area.

� Rotation: the same finger may be rotated at different angles with respect
to the sensor surface during different acquisitions.

� Partial overlap: finger displacement and rotation often cause part of the
search fingerprint area to fall outside the file fingerprint’s “field of view”,
resulting in a smaller overlap between the foreground areas of the search
and the file fingerprints. This problem is particularly serious in latent
fingerprints.

� Nonlinear distortion: the act of sensing maps the three-dimensional
shape of a finger onto a two-dimensional surface. This mapping results
in a nonlinear distortion in successive acquisitions of the same finger
due to skin plasticity.

� Pressure and skin condition: the ridge structure of a finger would be
accurately captured if ridges of the part of the finger being imaged were
in uniform contact with the sensor surface. However, the finger pressure,
dryness of the skin, skin disease, sweat, dirt, grease and humidity in the
air all confound the situation, resulting in a non-uniform contact. As a
consequence, the acquired fingerprint images are very noisy and the
noise varies strongly in successive acquisitions of the same finger,
depending on the magnitude of the above-cited causes.

� Noise: this is mainly introduced by the fingerprint sensing system; for
example, excessive or too little ink causes noise in inked fingerprints,
residues are left over on the glass platen from the previous fingerprint
capture; and latents may be lifted from rough surfaces.

� Feature extraction errors: the feature extraction algorithms are imper-
fect and often introduce measurement errors. Errors may be made
during any of the feature extraction stages (e.g. segmentation of the fin-
gerprint area from the background; estimation of orientation and fre-
quency images; detection of the number, type and position of the
singularities; detection of minutiae; and post processing). Aggressive
enhancement algorithms may introduce inconsistent biases that perturb
the location and the orientation of the reported minutiae from their
gray-scale counterparts. In low-quality fingerprint images, the minutiae
extraction process may introduce a large number of spurious minutiae
and may not be able to detect all the true minutiae.

Mathematically, the fingerprint minutiae matching problem can be
described as follows [21]. Let T and I be the representation of the file and
search fingerprint, respectively. Each fingerprint minutia may be described
by a number of attributes, including its location in the fingerprint image,
orientation, type (e.g. ridge ending or ridge bifurcation), a weight based on
the quality of the fingerprint image in the neighborhood of the minutia,
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etc. Most common minutiae matching algorithms consider each minutia as
a triplet m = {x, y, θ} which indicates the x, y minutia location coordinates
and the minutia angle θ:

T m m m m= , , = ={ , }, { , , }, ..1 2 1… m i i i ix y i mθ (2.12)

I m m m m= ′ ′ , , ′ ′ = ′ ′ ′ ={ , }, { , , }, ..1 2 1… m j i i ix y j nθ (2.13)

where m and n denote the number of minutiae in T and I, respectively. A
minutia ′m j in I and a minutia mi in T are considered “mating” if the spatial
distance between them is smaller than a given tolerance d0:

| | | |′ − ≤ ′ − ≤x x d y y dj i j i0 0and (2.14)

and the direction difference between them is smaller than an angular toler-
ance θ0:

min( | | , | | )′ − − ′ − ≤θ θ θ θ θj i j i360 0 (2.15)

Equation (2.14) takes the minimum of | |′ −θ θj i and 360°− ′ −| |θ θj i because
of the circularity of angles (the difference between angles of 2° and 358° is
only 4°). The “tolerance boxes” defined by d0 and θ0 are necessary to com-
pensate for the unavoidable errors made by the feature extraction algo-
rithm and to account for the small plastic distortions that cause the
minutiae positions to change (see Figure 2.14).

Aligning the two fingerprints is a mandatory step in order to maximize
the number of matching minutiae. Correctly aligning two fingerprints cer-
tainly requires displacement (in x and y) and rotation (θ) to be recovered
and likely involves other geometrical transformations, such as scale and
nonlinear distortion.

Let map(.) be the function which maps a minutia ′m j (from I) into ′′m j
according to a given geometrical transformation; for example by considering
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Figure 2.14 Examples of mating, non-mating and multiple mating minutiae.



a displacement of [∆x, ∆y] and a counterclockwise rotation θ around the
origin (the origin is usually selected as the minutiae centroid, i.e. the average
point; before the matching step, minutiae coordinates are adjusted by sub-
tracting the centroid coordinates):

map x y x yx y j j j j j j j j∆ ∆, , ( { , , }) { , ,θ θ θ′ = ′ ′ ′ = ′′ = ′′ ′′ ′ +m m θ
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Let mm(.) be an indicator function which returns 1 in case the minutiae
′′m j and mi match according to expressions (2.14) and (2.15):

mm j i( , )′′ =m m
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if expressions 14 and 15 are true
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⎧
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⎩

(2.17)

Then the matching problem can be formulated as:
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where P(i) is an unknown function which determines the “correspon-
dence” or “pairing” between I and T minutiae.

The maximization in Equation (2.18) can be easily solved if the function P
(minutiae correspondence ) is known; in this case, the unknown alignment
(∆x, ∆y, θ) can be determined in the least square sense. Unfortunately, in prac-
tice neither the alignment parameters nor the correspondence function, P, are
known, and therefore solving the matching problem is very hard. A brute force
approach, i.e. evaluating all the possible solutions (correspondences and
alignments), is prohibitive since the number of possible solutions is exponen-
tial in the number of minutiae (the function P is more than a permutation due
to the possible null values). In pattern recognition literature, the minutiae
matching problem has been generally addressed as a point pattern matching
problem, and a family of approaches known as relaxation methods, algebraic
and operational research solutions, tree-pruning approaches, energy-
minimization methods, Hough transforms etc. are available.

Fingerprint matching can be best visualized by taking a paper copy of a
file fingerprint image with its minutiae marked and a transparency of a
search fingerprint with its minutiae marked. By placing the transparency
of the search print over the paper copy of the file fingerprint and trans-
lating and rotating the transparency, one can locate the common minutiae
that exist in both prints. From the number of common minutiae found and
their closeness of fit, it is possible to assess the similarity of the two prints.
Figure 2.15 shows an example of a comparison of a fingerprint pair.

Of course, to make these minutiae comparisons manually would be
prohibitive in terms of time and would therefore seriously limit the
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effectiveness of the procedure. With automatic matching, the comparisons
can be done tens of thousands of times each second, and the results can be
sorted according to their degree of similarity and combined with any other
criteria that may be available to further restrict the candidates, all without
human intervention.

Ultimately, the difficulty in carrying out an identification lies in the
volume of fingerprint data that needs to be matched and the quality of the
fingerprints from which that data is extracted. In many thousands or mil-
lions of fingerprints, there is always a broad range of quality present, due to
varying skin conditions or the techniques used to capture the prints, or a
combination of both. The extracted data from a print to be searched may be
excellent, but the data for its mate on file may either be of poor quality or
improperly taken (e.g. only partial capture). There may also be other poor-
quality data not related to the fingerprint in question, but whose presence
may produce false comparison results to mask the true match. If more than
one finger is available to match, it is often possible to overcome the most
pathological set of circumstances that would otherwise make finding the
matching person impossible. It is an important policy to allow for sufficient
fingerprint data (multiple fingers from the same individual) to be collected
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Figure 2.15 An example of matching the search minutiae set in (a) with the file minutiae set in
(b) is shown in (c).



and stored for use when the file of fingerprints reaches its maximum size.
In this way it will always be possible to achieve a specified level of accuracy
almost independent of the volume of data on file.

2.5.6 Searching

Searches in a criminal AFIS are conducted with the same objective as in
manual criminal systems, but are preferred because of their fast speed.
AFIS can rapidly access records, filter the fingerprint database on a variety
of data elements (such as gender or age, if known), and match the filtered
candidates at a very high speed. Fingerprint pattern classifications can be
specified in terms of primary and secondary pattern types and tolerances
can be applied to account for expected coding error in the candidate selec-
tion process. A large number of possible candidates can be rapidly com-
pared and ranked by their likelihood of being a mate and presented to a
trained fingerprint technician. Such possibilities do not exist in manual
systems, not only because of the labor involved in comparing a large
number of records, but also because manual methods generally do not
allow efficient access to the records based on the ranges of filter
parameters.

Fingerprint databases in AFIS are often very large, consisting of hun-
dreds of thousands or millions of records. The database holds not only the
feature (minutiae) data for each finger but also the gray-scale fingerprint
images that may be required for manual inspection and printing. The data-
base may additionally hold the thinned ridge images that may be used for
added matching selectivity and reliability in certain unattended modes of
operation. Unattended “lights-out” applications require automatic deci-
sions to be made without the immediate possibility of human intervention.
Such cases arise in criminal identification operations that are not staffed
around the clock. If an arrest is made during non-office hours, a decision
needs to be made whether to hold (based on outstanding charges) or
release the individual in custody based on fully automatic matching of his/
her fingerprints. In a “lights-out” application, since the matching system
needs to make an unattended decision, more detailed comparisons are nec-
essary to provide the required level of decisional confidence. Eventually,
the automatic matching results would be confirmed by a fingerprint techni-
cian, but the automated decision process must be reliable enough to ensure
that initial errors are very rare.

The search process also needs to cope with a continual growth in the
database size as new arrest information is added. The processing of
searches must scale effectively as the number of records grows, since the
response time for searches is directly proportional to the volume of data
and computational resources. To achieve this scalability, the search is usu-
ally divided among a number of computers on a network that can access the
same database. At the same time, efficient methods are required to main-
tain the system database as additions, updates and deletions are concur-
rently made on various computers. A reasonable way to satisfy both these
needs is to provide a bi-level database architecture: the first level maintains
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the complete database with a general-purpose database management
system (DBMS), and the second level maintains discrete data partitions
resident on the matching engines. The first level provides general-purpose
data access, statistics, and reporting, while the second level provides rapid
access to data required by minutiae matching and filtering.

2.5.7 Manual Verification

In every large-scale identification application, whether criminal or civil, a
fingerprint technician manually confirms the identification made by the
AFIS. The AFIS accomplishes this by assembling a collection of the possible
candidates, ordered by the search and matching process, and delivering
these candidate images to a display station for review by the technician. In
some cases, all the identifications are submitted to a second level of review
by a supervisor to confirm the decisions made by a more junior technician.
Typically, the verification workstation provides side-by-side display of the
search fingerprint(s) sequentially with each of the file candidates ordered
by the matching process. The individual images are presented at a size and
resolution that allows the technician to examine details of the fingerprints
so as to make a decision whether the fingerprints match. Images are dis-
played at 8 bit gray-scale (256 levels) and magnified to at least five times
their normal size. It is a common practice to use large, high-resolution (e.g.
1,280 × 1,024 pixel) computer monitors to allow simultaneous display of
the images being reviewed and a set of controls to manage the process of
sequencing through the series of images.

2.6 Criminal Applications

Criminal identification systems that use manual techniques to file and
search records in a fingerprint collection have been in productive use for
over a century. Different systems operated at the national level, at the met-
ropolitan level, and in very local populations (e.g. prisons and jails). There
was seldom any interaction between these systems, not only because of
geographic or operational separation, but also because there were often
significant differences in the cataloging and search procedures of different
systems that made the interaction difficult. Even the introduction of AFIS
into law enforcement did not immediately stimulate interest in providing
interoperability among such systems.

2.6.1 National Systems

Apart from the system installed by the national police of Japan in the mid-
1970s, there was no rush internationally to install AFIS at national levels.
This was probably the result of two important factors: first, the databases of
inked tenprint files were large and the effort required to digitize them was
high; and secondly, the technical risks of implementing the complex
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workflow, the personnel task automation and the training procedures were
high. There was, however, a great deal of effort expended by national orga-
nizations (e.g. the FBI in the USA and the Home Office in the UK) to
research the technology and implement pilot systems. In fact, it is likely
that the commercialization of AFIS and the deployment of state and local
systems would not have progressed at the pace it did were it not for the
investment made by these national agencies.

In the USA, the FBI implemented several pilot systems that operated on
portions of the daily workload or criminal fingerprint database. The initial
implementation that started in the mid-1970s provided a means to test
research results in a small but operational environment. In this way,
research into image processing, automated pattern type classification,
automated search strategies and minutiae matching could be evaluated and
tuned to optimize performance metrics. During the 1970s, the FBI con-
tracted with a number of organizations as well as developed their own
research organization to manage the numerous projects that lead the way
to the Integrated Automated Fingerprint Identification System (IAFIS) in
place today. Among the incremental steps to IAFIS, in the mid-1980s the
FBI implemented a comprehensive automation of the workflow of the iden-
tification section, including specialized workstations to automate many of
the complex human tasks involved in processing a search. This automation
also included the complex media routing dictated by the workflow to mini-
mize one of the most serious problems in any large data processing system
– the lengthy delays associated with holding paper records in manual in-
baskets.

The transition to a large-scale imaging application environment pro-
vided enormous challenges for everyone at that time, but it was especially
challenging for the FBI to implement a system to manage up to 35,000
image-based transactions per day. Massive amounts of storage were
required to hold the transient search image data as well as the active file
image data. Imaging standards were needed for fingerprint scanning, com-
pression [44] and display to ensure that suitable data would be captured
and stored. Since an overwhelming amount of FBI work is submitted from
state and local agencies, the standardization needed to include these agen-
cies as well. At the same time as the FBI was laying the plans for IAFIS , live-
scan fingerprint capture devices were beginning to be deployed by many
state and local agencies to eliminate the inked fingerprint collection pro-
cess and the scanning of inked tenprint cards. It was necessary for the FBI
to extend imaging standards originally designed for scanned inked finger-
prints to include live-scan devices manufactured by several different ven-
dors. Although the FBI had no direct control over these live-scan vendors
or the agencies using live-scan equipment, they worked with both to the
benefit of the identification community at large. Ultimately, the FBI efforts
gained support from the international identification community and the
agencies involved cooperated through Interpol to develop standards
similar to those articulated by the FBI.

The IAFIS system currently in use at the identification division of the FBI
in Clarksburg, VA, has been designed, built and installed by the Lockheed
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Martin Corporation. This system handles in excess of 35,000 record sub-
missions daily and provides far more rapid response to identification
requests than was ever possible with the earlier manual systems. The
remaining challenge is to transition the agencies requesting identification
from submission of paper tenprint cards to submission of electronic fin-
gerprint images. This is a tremendous undertaking, given the wide geo-
graphic distribution of these agencies, the variation in operational
procedures, the non-interoperability of existing AFIS, and the secure elec-
tronic communications links that must be established between these agen-
cies and the FBI. A great deal of effort is under way to facilitate this
transition and provide the required technical, physical and hardware
support.

Outside the USA, several national AFIS were put in place in Europe and
the Middle East from 1984 onwards. In particular, systems were installed in
Switzerland, Norway and Holland. Thereafter, AFISs were installed in the
UK, Denmark, Sweden, Finland, Belgium, France, Germany, Spain, Por-
tugal, Austria, Hungary, the Czech Republic, Slovenia and Slovakia. Since
then, many other countries have already installed or are in the process of
installing AFIS.

2.6.2 Local Systems

In the USA, local agencies, primarily cities and counties, were among the
first adopters of AFIS. This was probably because many metropolises were
at the forefront of criminal investigations and viewed their needs as more
immediate than did the state agencies. By the late 1970s, these local agen-
cies saw an opportunity to dramatically improve their capability to search
latent prints lifted from the crime scenes through AFIS and committed to
implementing fingerprint automation within their identification bureaus.
For metropolises, latent print investigation was a local process rather than
a state process. State crime labs focused on supporting smaller jurisdic-
tions that did not have the trained staff necessary to handle all the details of
crime scene investigations. Local agencies implementing AFIS envisioned
dramatic improvements in their ability to catch criminals and to use their
trained staff more effectively.

Another factor that may have led the early AFIS implementations to be at
the local level was the generally smaller size of the fingerprint databases
held in these bureaus. The states maintained fingerprint databases that
were often several orders of magnitude larger than those of the localities
within the state, and conversion to AFIS represented a formidable under-
taking in both time and money. Regardless of the reasons, local agencies
led the way in AFIS adoption, and by the end of the 1970s there were at least
half a dozen cities in the USA with an AFIS in place. During this time, some
state agencies were also evaluating the use of AFIS for latent print
matching. However, this number remained rather small until the mid-
1980s, when many US cities and some European agencies began AFIS pro-
curement activities following the success of the AFIS reported by the early
adopters.
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In the mid-1980s, the AFIS implementations began to store the full fin-
gerprint images in the computerized databases in addition to the minutiae
data. This made it possible to manually review the candidate matches on a
display screen, which was significantly faster and less laborious than the
inked card processes.

2.6.3 Interoperability

As more states implemented AFIS, the problem of interoperation among
the local agencies gained importance. Further, it was common for the states
to receive fingerprints from the local agencies to be searched against the
state criminal database before submission to the FBI. This provided some
filtering of identification requests to the FBI. Therefore it became desirable
to have standardized protocols for electronic submissions of fingerprint
matching requests from the local agency to the state and, finally, to the
national AFIS.

The efforts put into AFIS interoperability by NIST under the FBI spon-
sorship resulted in an ANSI/NIST standard for data interchange. This stan-
dard was initially crafted in mid-1980, is updated every 5 years, and defines
data formats for images, features and text [19]. Since different AFIS ven-
dors have different implementations and definitions of minutiae feature
details, and since record data elements vary between agencies, the ANSI/
NIST standard provides a common basis for interoperability by encapsu-
lating data in defined formats.

To handle the differences in record data elements, the standard requires
that the sending agency use the element definitions of the receiving
agency. In practice, most agencies provide their definitions for other
agencies to use. However, it is difficult to get the vendors involved in the
standards process and to actively provide support for the formats
required to exchange data. It can be a lengthy process to get all the defini-
tions created, agreed upon, and then implemented, so that the data can
actually be exchanged. The FBI has provided not only the forum and
impetus for the creation of the interchange standard, but has also assisted
their users in both technical and material ways to facilitate data exchange.
However, with so many separate agencies, each with its own resources and
schedules, meeting specific implementation dates has been a challenging
task for all involved.

Outside North America, under the auspices of the Interpol AFIS Expert
Working Group (IAEG), there is a similar effort toward interchange stan-
dardization following the basic format of the ANSI/NIST standard. There
are at least 11 countries (Brazil, Canada, France, Germany, Japan, Mexico,
Norway, South Africa, Spain, UK and USA), and an observer from Europol
that participate in this international effort. IAEG has defined their cur-
rent standard as INT-I Version 4 [32] and is committed to periodic
updates. IAEG clearly demonstrates the level of international cooperation
necessary in an era when criminal activity is not contained by national
boundaries.
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2.6.4 “Daubert” Questions

Much has been written about the theoretical infallibility of fingerprints in
criminal identification. However, unlike DNA matching research that
emerged from a laboratory environment with a quantitative foundation
and a robust estimate of the likelihood of occurrence of the same (or sim-
ilar) protein strings in nature [33], fingerprint matching has not had such
rigorous quantitative development. Fingerprint collection and examina-
tion began in the field rather than in the laboratory. There is now well over
100 years of accumulated and established knowledge, observation and
experimental investigation coupled with theoretical explanation of the
origin and development of fingerprints and their individuality. These qual-
ifications, as a science, have been successfully used to demonstrate the
validity of fingerprints for a wide range of identification functions. Finally,
theoretical quantifications of the amount of discriminatory information
present in the fingerprints have now been provided [34].

Nevertheless, recently, there have been a number of “Daubert” challenges
in courts of law to the validity of latent fingerprint identification in partic-
ular and to the scientific foundations of fingerprint analysis and compar-
ison in general.

The US Supreme Court’s “Daubert” decision originated in the 1993 civil
case of Daubert vs. Merrill Dow Pharmaceuticals and generated an opinion
regarding the admissibility of scientific evidence in Federal court [35].
Many state and local courts have also adopted this ruling. The opinion ren-
dered was that a trial judge must screen scientific evidence to ensure that it
is relevant and reliable, and the focus must be on principles and methods,
not just on the conclusions. Courts must consider testing, validation, peer
review of the processes, error rates and “general acceptance” of the
practice.

The application of the “Daubert criteria” to fingerprint identification in
criminal cases began in 1999 with the case of US vs. Byron C. Mitchell [36].
The admissibility of fingerprint evidence was challenged on the premises
that, although fingerprints have been used for over 100 years, there is no
scientific foundation for reliability (e.g. uniqueness and permanence), for
estimating error rates, or for the uniformity and level of training of latent
fingerprint examiners.

In defense of the general forensic admissibility of fingerprint evidence in
the Mitchell case, the US Department of Justice expended great efforts to
collect information on: fingerprint uniqueness and permanence based on
the formation of friction ridges during embryonic development; the
forensic techniques of fingerprint identification and the peer review pro-
cess; the statistics related to the errors in identification; and the training
programs in place for latent fingerprint collection, examination and com-
parison. The ruling in this landmark case concluded that (1) “...human fric-
tion ridges are unique and permanent throughout the area of friction
ridge skin, including small friction ridge areas...” and (2) “...friction ridge
skin arrangements are unique and permanent...” [36]. Notwithstanding
this ruling, there have been at least 36 more Daubert challenges to the
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admissibility of fingerprint evidence in criminal (and one civil)
proceedings till date.

The significance of these challenges to fingerprint identification is that
they have forced the law enforcement community in general, and the latent
fingerprint examiners in particular, to consider the processes and proce-
dures more carefully and understand the scientific foundation for the many
techniques and rules previously taken for granted. Latent examiners are
now more aware of the details of the techniques used to conclude that a par-
tial latent print from a crime scene actually matches a rolled, inked finger-
print taken perhaps many years earlier. The fact that these challenges
continue to be filed is convincing evidence that fingerprint identification
community must continue to explore and understand the firm scientific
foundation on which it stands [37, 45]. There must also be a continuing
effort in the teaching of the science (well documented in the Daubert hear-
ings) to ensure that all technicians in the field understand and apply these
well-developed techniques in their daily work. It is also important to con-
tinue a high level of peer review to ensure that there is consistency and
quality necessary to maintain confidence in the error rates established in
application.

2.7 Civil Applications

As criminal AFISs have matured, it has become apparent that there are
many opportunities in the civil sector where fingerprints might be useful to
verify a person’s identity or identify a person who may try to obtain an
identity fraudulently. In some instances it may be desirable to determine
whether an applicant for a civil document or a sensitive employment posi-
tion has a criminal record by matching the applicant’s fingerprints against
a criminal AFIS.

Although, there is relatively little desire within North America for a gen-
eral civil identification document, it is a common practice in many parts of
the world to require submission of applicant’s fingerprints when applying
for an identity card or registering to vote. With strictly manual fingerprint
searches and comparison, these systems become intractable as the number
of records grows, and a civil AFIS can supply a more reliable and practical
solution.

Civil AFIS differ from criminal AFIS in several ways. Civil AFIS have no
capability for the input of latent prints, the database contains only dab live-
scanned fingerprints of limited finger surface area instead of the “nail-to-
nail” rolled fingerprints of criminal AFIS, and there is no capability for
interoperability with FBI or other national criminal systems.

2.7.1 Welfare Fraud Reduction

In the USA, there is a growing interest to control the abuse of Benefits
Transfer Systems (BTS) by fraudulent application for multiple benefits

54 Biometric Systems



through multiple registrations. Such fraud has been documented in BTS
that do not use any form of identification.

In the early 1990s, a system was put into place in Los Angeles County
(AFIRM) to register the two index fingerprints of all applicants for benefits
transfer, and to create a database that could be searched to detect and pre-
vent duplicate enrollments. The system also allowed identity verification of
persons already in the system and demonstrated very significant savings
[38]. With the implementation of the State Fingerprint Imaging System
(SFIS) within California (using the AFIRM database as the starting point),
these functions became statewide.

SFIS incorporates many more counties into a comprehensive network of
fingerprint imaging, data entry, and processing with the goal of controlling
the level of fraud within the state Health and Human Services network.
Currently, several states implement fingerprint systems similar to SFIS to
maintain control over fraud [39]. It seems clear that this introduction of
fingerprint identification/verification technology into BTS will expand
since it has been proven effective in reducing costs due to fraud in the ben-
efit application process. As the number of these applications grows, they
will demonstrate how AFIS technology may be applied to other types of
benefit delivery systems.

2.7.2 Border Control

Another important application of fingerprint technology was introduced
as a part of the Operation Gatekeeper program of the Border Patrol, a divi-
sion of the US Immigration and Naturalization Service (INS). This pro-
gram, named IDENT, was initiated in the mid-1990s in the area around San
Diego, California, and its purpose is to identify individuals making
repeated illegal border crossings. Records maintained in the fingerprint
identification system provide support for legal action against the most
severe recidivists (e.g. those with 15 or 20 recorded attempts).

Since fingerprint identification was only one of many aspects of Opera-
tion Gatekeeper, its effectiveness alone has been difficult to assess. How-
ever, it is clear that Operation Gatekeeper, in its entirety, had the effect of
shifting apprehensions of illegal border crossers from the San Diego area
eastward. It also established credibility for the use of fingerprint identifica-
tion at the borders in other countries. Many countries, including Australia,
Singapore, Hong Kong, Malaysia, Netherlands, Germany and the UK, are
developing biometric systems to aid the identification of persons seeking
admission to the country. In addition to fingerprints, hand geometry, iris
and facial recognition are also being used. It is clear that the verification of
a person’s identity will become an important part of international travel.

2.7.3 Driver registration

There is a long history of use of fingerprints with driver licenses dating
back at least 50 years. In California, the fingerprinting requirement was
eliminated for many years but then reintroduced in the 1980s when it
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became possible to electronically capture fingerprint images. While the use
of fingerprints in the driver registration process has great potential in
fraud protection, there are serious privacy concerns over the possibility of
“function creep”, i.e. the potential for the system to be used for purposes
other than driver identification. Immediately after September 11th 2001, at
the mere suggestion of the potential for use of the driver license database to
identify terrorists, there was an immediate response by groups such as the
American Civil Liberties Union (ACLU) [40], the Electronic Privacy Infor-
mation Center (EPIC) [40], and the National Research Council [42],
pointing out the potential problems with any attempt to standardize the
state driver license systems into a national ID card. However, it seems clear
that there are many legitimate ways in which the driver license program
can collect and use fingerprints without privacy implications. For example,
fingerprints stored on the driver license could be used to verify the identity
of a person renewing a license (e.g. to combat identity theft). At the same
time, it also seems clear that there will be very earnest debate about any
widespread application of fingerprinting to driver licensing.

2.8 Commercial Applications

After over 30 years of development, implementation, and operational use of
AFIS for criminal identification, and more limited use in civil and high-
security access control applications, it seems that the use of fingerprint
matching in other civil and commercial applications is rapidly increasing.
The past 20 years have seen the introduction of a variety of personal com-
puter-friendly fingerprint scanners with ever decreasing price points,
making them more and more affordable for use in a wide variety of com-
mercial applications [43]. Fingerprint matching technology is now found
in shrink-wrapped software marketed by companies focused on the com-
mercial application of fingerprint technology. The question is no longer
whether fingerprint matching will become an integral part of secure com-
mercial applications, but when and in what volume.

2.8.1 Miniaturized Sensors

One of the important changes that have occurred within the last 5 to 10 years
has been the miniaturization and cost reduction of the live-scan fingerprint
sensors. Many vendors now manufacture optical sensors that are small and
low-cost. Further, a number of solid state fingerprint sensors have been
developed that are fabricated by processes quite similar to those used to
manufacture semiconductor devices. These solid state sensors take advan-
tage of sub-micron fabrication methods to provide fingerprint images of
high resolution. Initially, these solid state sensors were constrained by the
die size that could be fabricated with acceptable yield. The problem was not
the creation of a large enough sensor area, but rather the number of good,
flaw-free sensors that could be obtained from a semiconductor wafer. As die
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and wafer sizes have increased (e.g. 300 mm) to meet the demands for the
ever-expanding integrated circuits for computers and optical sensors for
cameras and video recorders, so has the size of solid state fingerprint sen-
sors. Additionally, the planar fabrication techniques allow additional func-
tions to be incorporated either on the same substrate, or easily integrated
into an interconnect substrate using semiconductor bonding techniques.
Similarly, the small live-scan optical sensors now use electronic imagers and
have memory on board to allow additional functionality to be implemented
in the sensor. The added functionality means that the entire finger sensor,
the associated electronics for processing the images, and the interface with
the personal computer can be incorporated into a small, rugged assembly. In
fact, most of these sensors now use the universal serial bus (USB) as the pre-
ferred means for connection. No more expensive frame grabbers and com-
plicated hardware installation; just plug and play for fingerprint capture and
matching.

2.8.2 Personal Access Protection

With the availability of affordable and small finger scanners and access
protection software, fingerprint verification can be easily incorporated
into most computers. Indeed, existing applications provide all the tools
necessary to verify the persons accessing a computer or computer network
from a central server. These sophisticated applications include, in many
cases, the active evaluation of the positioning of the finger (as low-cost sen-
sors may have an area as small as 0.5 × 0.5 in) to ensure that the finger
is placed in the correct position for a match to be successful. This level of
integration is a reflection of the increased awareness of the sensor manu-
factures to the operational issues that must be considered for
implementations to be successful.

Personal access protection can, and probably should, extend beyond the
initial logon to the computer or network. Most, if not all, computer users
connect to the Internet to obtain information, send and receive email,
transact business and make purchases. With all the concern over identity
theft, there is an urgent need to incorporate some form of validation of per-
sonal identity, particularly for credit card purchases over the Internet.
Although a number of biometrics could be used to verify the identity of a
person across a network, fingerprints are particularly appropriate for
remote transactions. With a fingerprint scanner attached to a personal
computer, a person can register fingerprint data with an Internet sales
organization or with a “third party” security service organization that
hosts the data. This data could be used to verify that the person completing
a transaction at a remote computer is the person authorized to use an
offered credit card. Personal fingerprint scanners are ultimately reaching
the $10 price point as manufacturing techniques are maturing and volume
of production is increasing. This makes fingerprints a very affordable
security technology for personal use.
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2.8.3 Banking Security

The banking industry has been evaluating the use of fingerprints for many
years for credit card commerce. Unlike the Internet environment, where a
sales organization intrinsically has a substantial computer capability in
place, most retail organizations have limited computer capability to sup-
port business transactions. Their computers (if they exist beyond the cash
register) are used for maintenance of inventory data. The cost of finger-
print sensors has not been low enough until recently to make fingerprint
identity verification a cost-effective part of their business operation. But
with the cost of fingerprint sensors dropping, and with the software to
enroll and compare fingerprints becoming reasonably robust, cost-effec-
tive commercial systems are increasingly being deployed for verifying cus-
tomers at the point of sale (POS) terminals. The key requirement is that
fingerprint data needs to be captured at the time of credit card issuance and
stored on the card (typically requiring about 300 bytes). The computer at
the point of sale is required only to verify that the print captured at the
checkout counter matches the data encoded on the credit card. This does
not eliminate the need, however, to verify that the credit card account is still
authorized and within its spending limit.

Another important aspect of the banking business is the ubiquitous
automatic teller machines (ATMs) and money access centers (MACs), now
estimated to exceed 300,000 in number. There has been considerable
evaluation of competing biometric technologies to verify the identity of
persons using these machines. The two most commonly mentioned
biometric technologies include fingerprint and iris scanning. Planar-
constructed fingerprint scanners, capable of integration into small
assemblies, seem ideally suited for incorporation into the mechanical
enclosures of the ATMs. These sensors can be affordably replaced if they
are damaged intentionally or through extended use (e.g. 3,000+ uses each
day). The simplicity of the available miniaturized live-scan fingerprint
scanner interface (USB connection), the robust capture techniques and
proven matching accuracy make fingerprint verification a serious
competitor for the ATM application.

2.8.4 Business-to-Business Transactions

With more and more businesses sharing information with manufacturers,
suppliers etc. via the computer and the Internet, and with the potential for
misuse of such information by unauthorized persons, there is an opportu-
nity for fingerprint-based verification systems to provide increased secu-
rity for business-to-business transactions. The fingerprints of persons
authorized to conduct business transactions or access business data can
either be registered at the web sites of the businesses involved or managed
by a security service providing a broad range of identity validation needs
for individuals. This function can be integrated with the verification of
individuals for credit card purchases so that data need not be replicated for
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each separate verification application. The key elements are the small, low-
cost fingerprint sensor and the personal computer, integrated to service
the wide range of business applications that benefit from validation of a
person’s identity across a network.
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3Iris Recognition

Richard Wildes

3.1 Introduction

Biometrics bear the promise of providing widely applicable approaches to
personal verification and identification1. For such approaches to be widely
applicable, they must be highly reliable even while avoiding invasiveness in
evaluating a subject of interest. Reliability has to do with the ability of the
approach to support a signature that is unique to an individual and that can
be captured in an invariant fashion time and time again. Biometrics have
the potential for high reliability because they are based on the measure-
ment of an intrinsic physical property of an individual. For example, fin-
gerprints provide signatures that appear to be unique to an individual and
reasonably invariant with the passage of time, whereas faces, while fairly
unique in appearance can vary significantly with the vicissitudes of time
and place. Invasiveness has to do with the ability to capture the signature
while placing as few constraints as possible on the subject of evaluation. In
this regard, acquisition of a fingerprint signature is invasive as it requires
that the subject makes physical contact with a sensor, whereas images of a
subject’s face that are sufficient for recognition can be acquired at a
comfortable distance and, in certain scenarios, covertly.

Considerations of reliability and invasiveness suggest that the human
iris is a particularly interesting structure on which to base a biometric
approach for personal verification and identification. From the point of
view of reliability, the spatial patterns that are visually apparent in the
human iris are highly distinctive to an individual [1, 36]; see for example
Figure 3.1. Further, the appearance of any one iris suffers little from day-to-
day variation. From the point of view of invasiveness, the iris is an overt
body that can be imaged at a comfortable distance from a subject with the
use of extant machine vision technology [64]. Owing to these features of
reliability and (non)invasiveness, iris recognition is a promising approach
to biometric-based verification and identification of people. Indeed,
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significant strides have been made toward bringing iris recognition out of
the laboratory and into real-world deployment [56, 46].

Early use of the iris as the basis for a biometric-based approach to recog-
nizing persons can be traced to efforts to distinguish inmates in the Parisian
penal system by visually inspecting their irises, especially the patterning of
color [4]. More recently, the concept of automated iris recognition was pro-
posed [23]; however, it does not appear that this team ever developed and
tested a working system. Early work toward actually realizing a system for
automated iris recognition was carried out at Los Alamos National Labora-
tories in the USA [34]. Subsequently, a number of research groups developed
and documented prototype iris recognition systems working with highly
cooperative subjects at close distances [5, 14, 38, 40, 53, 57, 59, 65, 73].

These systems have shown promising performance on diverse databases
of hundreds of iris images. More recently, efforts have been aimed at
allowing for iris recognition at somewhat greater distances and with less
active participation on the part of the subject [18, 26]. Again, these systems
have shown interesting levels of performance.

More anecdotally, a notion akin to automated iris recognition came to
popular attention in the James Bond film Never Say Never Again, as charac-
ters are depicted having images of their eye captured for the purpose of
identification [25].

This chapter unfolds along the following lines. This section has served to
introduce the notion of iris recognition as the basis for a biometric approach
to verifying or identifying persons. The Section 3.2 reviews relevant facts
about the anatomy and physiology of the iris. Section 3.3 provides an over-
view of approaches to sensing for the capture of iris images to drive recogni-
tion. Section 3.4 describes approaches to representing and matching iris
signatures. Section 3.5 describes extant iris recognition systems, including
the evaluation of their performance. Finally, section six provides a look at
future directions. Throughout this discussion, the iris recognition systems
and components developed by Daugman [12–16] and Wildes et al. [64–69]
will serve as the major sources of illustration owing to the fact that they are
the best documented approaches in the public domain literature.
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Figure 3.1 The distinctiveness of the human iris. The left and right panels show images of the left
iris of two individuals. Even to casual inspection, the imaged patterns in the two irises are mark-
edly different. R. Wildes, Iris recognition: an emerging biometric technology. Proceedings of the
IEEE, 85(9), 1348–1363, 1997 (© 1997 IEEE)



3.2 Anatomical and Physiological Underpinnings

To appreciate the richness of the iris as a pattern for recognition, it is useful to
consider its structure in a bit of detail. In gross terms, the iris is part of the
uveal, or middle, coat of the eye. It is a thin diaphragm stretching across the
anterior portion of the eye and supported by the lens; see Figure 3.2. This sup-
port gives it the shape of a truncated cone in three dimensions. At its base, the
iris is attached to the eye’s cilliary body. At the opposite end it opens into the
pupil, typically slightly to the nasal side and below center. The cornea lies in
front of the iris and provides a transparent, protective covering.
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At a finer grain of analysis, the iris is composed of several layers. The pos-
terior surface is composed of heavily pigmented epithelial cells that make it
impenetrable to light. Anterior to this layer two muscles are located that
work in cooperation to control the size of the pupil. The stromal layer is
next; it consists of collagenous connective tissue, arranged in arch-like pro-
cesses. Corkscrew shaped blood vessels also are present in this layer,
arranged along the radial direction. Finally, the anterior border layer com-
pletes the stratification.

The anterior border layer is distinguished from the stromal layer by its
increased density, especially in terms of chromatophores, i.e. individual
pigment cells.

The visual appearance of the iris is a direct result of its multilayered
structure. The anterior surface of the iris is seen to be divided into a central
pupillary zone and a surrounding cilliary zone. The border of these two
areas is termed the collarette; it appears as a zigzag circumferential ridge
resulting as the anterior border layer ends abruptly near the pupil. The
cilliary zone contains many interlacing ridges resulting from stromal sup-
port. Contractile lines that are present in this region can vary with the state
of the pupil. Additional meridional striations result from the radiating
vasculature. Further variations in appearance owe to crypts (irregular
atrophy of the anterior border layer), nevi (small elevations of the anterior
border layer) and freckles (local collections of chromatophores). In com-
parison, the pupillary zone can be relatively flat. Often, however, it shows
radiating spoke-like processes and a pigment frill where the posterior
layer’s heavily pigmented tissue shows at the pupil boundary. Significantly,
an image taken of the iris with a standard video camera can capture many
of the anatomical details just described; see Figure 3.3.

Iris color results from the differential absorption of light impinging on
the pigmented cells in the anterior border layer. When there is little
pigmentation in the anterior border layer, light reflects back from the
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posterior epithelium and is scattered as it passes through the stroma to
yield a blue appearance. Progressive levels of anterior pigmentation lead to
darker colored irises.

Claims that the structure of the iris is unique to an individual and is
stable with age come from two main sources. The first source of evidence
comes from clinical observations. During the course of examining large
numbers of eyes, ophthalmologists [23] and anatomists [1] have noted that
the detailed spatial pattern of an iris, even the left and right irises of a
single person, seems to be unique. Further, in cases with repeated observa-
tions, the patterns seem to vary little, at least past childhood. The second
source of evidence comes from developmental biology [37, 41]. In this liter-
ature one finds that while the general structure of the iris is genetically
determined, the particulars of its minutiae are critically dependent on cir-
cumstances (e.g. the initial conditions in the embryonic precursor to the
iris). Therefore they are highly unlikely to be replicated via the natural
course of events. For example, the shape of the collarette depends on the
particulars of how the anterior border layer recedes to allow for the mature
pupil. Rarely, the developmental process goes awry, yielding only a rudi-
mentary iris (aniridia) or a marked displacement (corectopia) or shape
distortion (colobloma) of the pupil [37, 47]. Developmental evidence also
bears on issues of stability with age. Certain parts of the iris (e.g. the
vasculature) are largely in place at birth; whereas, others (e.g. the muscula-
ture) mature around two years of age [1, 37]. Of particular significance for
the purposes of recognition is the fact that pigmentation patterning con-
tinues until adolescence [1, 49, 62]. Also, the average pupil size (for an indi-
vidual) increases slightly until adolescence [1]. Following adolescence the
healthy iris varies little for the rest of life, although slight depigmentation
and shrinking of the average pupillary opening are standard with advanced
age [1, 47]. Various diseases of the eye can drastically alter the appearance
of the iris [45, 47]. Also, certain drug treatments for eye disease (e.g.
prostoglandin-based treatment of glaucoma) may alter iris pigmentation.
Further, it appears that intensive exposure to certain environmental con-
taminants (e.g. metals) can alter iris pigmentation [45, 47]. However, these
conditions are rare. Claims that the iris changes with more general states of
health (iridology) have been discredited [3, 70].

Another interesting aspect of the physical characteristics of the iris from
a biometric point of view has to do with its moment to moment dynamics.
Due to the complex interplay of the iris’s muscles, the diameter of the pupil
is in a constant state of small oscillation at a rate of approximately 0.5 Hz, a
movement referred to as hippus [1, 17]. Potentially, this movement could be
monitored to make sure that a live specimen is being evaluated. Further,
since the iris reacts very quickly to changes in impinging illumination (e.g.
on the order of hundreds of milliseconds for contraction), monitoring the
reaction to a controlled illuminant could provide similar evidence. In con-
trast, upon morbidity the iris contracts and hardens, facts that may have
ramifications for forensics.

On the whole, the anatomy and physiology of the iris suggest that it provides
a rich source for biometric-based personal verification and identification. The
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iris tissue shows substantial visually apparent spatial detail. Moreover, the pat-
terns of the minutiae are highly distinctive to an individual and, following
childhood, typically stable with age. Nevertheless, it is important to note that
large-scale studies that specifically address the distinctiveness and stability of
the iris, especially for biometrics, have yet to be performed. Further details of
iris structure can be found in the biomedical literature (e.g. [1, 17, 50]).

3.3 Sensing

Due to the differential nature of how light is reflected from the iris minutiae,
optical sensing is well suited to acquisition of an iris image for recognition
purposes. Still, acquisition of a high-quality iris image, while remaining
non-invasive to human subjects, is one of the major challenges of automated
iris recognition. Given that the iris is a relatively small (typically about 1 cm
in diameter), dark object, and that people are very sensitive about their eyes,
this matter requires careful engineering. Several points are of particular con-
cern. First, it is desirable to acquire images of the iris with sufficient resolu-
tion and sharpness to support recognition. Second, it is important to have
good contrast in the iris pattern while restricting illumination to be within
limits of eye safety and comfort. Third, the iris must be well framed (i.e. cen-
tered) without unduly constraining the subject (i.e. preferably without
requiring the subject to employ an eyepiece, chin rest or other contact posi-
tioning that would be invasive). Further, as an integral part of this process,
artifacts in the acquired images (due to specular reflections, optical aberra-
tions etc.) should be eliminated as much as possible.

In response to these challenges of optically imaging an iris for recogni-
tion, two kinds of approach have been developed. One type of approach
makes use of passive sensing while requiring considerable active participa-
tion by the subject to self-position for centering and focus. Examples of this
approach have been demonstrated at sensor to subject distances under 0.5 m.
A second type of approach makes use of active sensing to acquire images of
the iris with only modest participation on the part of the subject, e.g. the sub-
ject must simply stand still and look forward, while the system automatically
adjusts its optical parameters to best accommodate the subject. Examples of
this approach have been demonstrated to distances of 0.75 m. In the
remainder of this section examples of each approach are presented.

Functional diagrams of two passive sensor rigs that have been developed
for iris image acquisition are shown in Figure 3.4. Both of the depicted sys-
tems respond to the fundamental issue of spatial resolution using standard
optics. For example, the apparatus reported by Daugman captures images
with the iris diameter typically between 100 and 200 pixels from a distance of
46 to 15 cm using a standard lens and video camera with video rate capture.
Similarly, the apparatus reported by Wildes et al. images the iris with approx-
imately 256 pixels across the diameter from 20 cm using a standard lens and
a silicon-intensified camera (to enable imaging with low illumination levels
[28]) with video rate capture. Due to the need to keep the illumination level
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relatively low for subject comfort and safety, the optical aperture cannot be
too small (e.g. f-stop 11). Therefore, both systems have fairly small depths of
field, approximately 1 cm. Motion blur due to eye movements typically is not
problematic, given the video rate capture and the assumption that the sub-
ject is cooperating in attempting to maintain a steady gaze. Empirically, the
overall spatial resolution that results from these designs appears to be suffi-
cient to support iris recognition. Unfortunately, neither Daugman nor
Wildes et al. went so far as to document the combined camera/lens modula-
tion transfer function for their particular optical assemblies.

Interestingly, both systems essentially eschew color information in their
use of monochrome cameras with 8 bit gray level resolution. Presumably,
color information could provide additional discriminatory power. Also,
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color could be of use for initial coarse indexing through large iris data-
bases. For now, it is interesting to note that empirical studies to date suggest
the adequacy of monochrome level information alone (see, for example,
Section 3.5).

In order to cope with the inherent variability of ambient illumination,
extant approaches to iris image sensing provide a controlled source of illumi-
nation as a part of their method. Such illumination of the iris must be con-
cerned with the trade-off between revealing the detail in a potentially low-
contrast pattern (e.g. due to relatively uniform dense pigmentation of dark
irises) and issues of eye comfort and safety [44].As originally documented, the
Daugman and Wildes et al. sensor systems both made use of illumination with
spectral energy concentrated in the visible range. More recently, illumination
for iris recognition has tended to concentrate on near infrared sources, princi-
pally to decrease invasiveness and with an aim of realizing a source that is
invisible to human subjects. To date, however, while the resulting light typi-
cally is not annoying to subjects, it is not invisible, as a dull red glow is per-
ceived: the use of commercially available near-infrared sources that are
adequate to illuminate the iris for recognition has not made it possible to
achieve total invisibility to the human eye; the bandwidth of available sources
overlaps sufficiently with the sensitivity of human photoreceptors to drive
perception. Significantly, an additional benefit of iris imaging in the infrared
is that irises that appear as relatively dark and patternless in the visible spec-
trum are revealed to have patterns of comparable richness to other more obvi-
ously textured irises. The increase in apparent detail is due to the fact that the
principal iris pigment, melanin (which, when concentrated, yields dark col-
ored irises in the visible spectrum), absorbs poorly in the infrared and hence
allows the structural patterns of the iris to be imaged with greater contrast.

An interesting difference between the illumination solutions described in
Daugman and Wildes et al. has to do with the former’s use of a compact
(unpolarized) source, while the latter employs a diffuse polarized source.
The compact source yields a particularly simple solution. Further, by careful
positioning of the light source below the operator, reflections of the point
source by eye glasses can be avoided in the imaged iris. However, without
placing undue restriction on the subject, it is difficult to reliably position the
specular reflection at the eye’s cornea outside the iris region. Therefore this
design requires that the region of the image where the point source is seen
(the lower quadrant of the iris as the system was originally instantiated)
must be omitted during matching, since it is dominated by artifacts. The
latter design results in an illumination rig that is more complex; however,
certain advantages result. First, the use of matched circular polarizers at the
light source and the camera essentially eliminates the specular reflection of
the light source 2. This allows for more of the iris detail to be available for
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not passed through the camera’s filter and is thereby blocked from forming an



subsequent processing. Secondly, the coupling of a low light level camera (a
silicon intensified camera [29]) with a diffuse illuminant allows for a level of
illumination that is entirely unobjectionable to human subjects.

Positioning of the iris for image capture is concerned with framing all of
the iris in the camera’s field of view with good focus. Both the Daugman and
Wildes et al. systems require the subject to self-position their eye region in
front of the camera. Daugman’s system provides the subject with live video
feedback via a miniature LCD display, placed in line with the camera’s optics
via a beam splitter. This allows the subject to see what the camera is cap-
turing and adjust their position accordingly. During this process the system
is continually acquiring images. Once a series of images of sufficient quality
is acquired, one image is automatically forwarded for subsequent processing.
Image quality is assessed by looking for high-contrast edges marking the
boundary between the iris and the sclera. In contrast, the Wildes et al. system
provides a reticle to aid the subject in positioning.

As the subject maneuvers, the relative misalignment of cross-hairs pro-
vides continuous visual feedback regarding the accuracy of the current
position. Once the subject has completed the alignment, image capture is
activated via a button press. An example acquired iris image, as captured by
the Wildes et al. approach is shown in Figure 3.5.
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Figure 3.5 Captured iris image. An example iris image as captured by the Wildes et al. passive
sensor is shown. Notice that this initial stage of sensing captures not only the iris but also sur-
rounding portions of the eye region. Subsequent processing must more precisely localize the iris
per se. R. Wildes, Iris recognition: an emerging biometric technology. Proceedings of the IEEE, 85(9),
1348–1363, 1997 (© 1997 IEEE)

image. In contrast, the diffusely reflecting parts of the eye (e.g. the iris) scatter the
impinging light. This light is passed through the camera’s filter, and is subsequently
available for image formation [33]. Interestingly, a similar solution using crossed
polarizers (e.g. vertical at the illuminant and horizontal at the camera) is not
appropriate for this application: the birefringence of the eye’s cornea yields a low-
frequency artifact in the acquired images [11].



Subjectively, both of the described approaches to positioning are fairly
easy for a human subject to master. However, since the potential for truly
non-invasive assessment is one of the intriguing aspects of iris recognition,
it is worth underlining the degree of operator participation that is required
in these systems. While physical contact is avoided, the level of required
cooperativity may still prevent the systems from widespread application. It
is to this limitation that an active sensing approach to iris image acquisi-
tion can respond, as documented next.

Research initiated at Sarnoff Corporation [26] and subsequently trans-
ferred to Sensar Incorporated [18] for refinement and commercialization
has yielded the most non-invasive approach to iris image capture that has
been documented to date. For capture, a subject merely needs to stand still
and face forward with their head in an acquisition volume of 60° vertical by
45° horizontal and a distance of approximately 0.38 to 0.76 m, all measured
from the front-center of the acquisition rig. Capture of an image that has
proven suitable to drive iris recognition algorithms can then be achieved
totally automatically, typically within 2–10 seconds.

The developed approach makes use of active vision techniques whereby
a wide field of view binocular camera apparatus localizes the head and eye
within the entire acquisition volume and then drives a narrow field of view
camera to point, zoom and focus on the area immediately surrounding the
iris. The image captured by the narrow field of view camera is then used for
recognition purposes. Illumination is provided by a pair of LED near-
infrared (narrow band, peak energy approximately 880 nm) illumination
panels that cover the entire acquisition volume. The resulting lighting is
not annoying to humans and is perceived as a dull red glow. A schematic
diagram of the approach is shown in Figure 3.6.

The wide field of view binocular camera apparatus is charged with local-
izing the eye region of a subject in three dimensions with respect to the
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image acquisition platform. To accomplish this task, standard techniques in
binocular stereo from computer vision are employed [21, 60]. Two standard
monochrome video cameras outfitted with wide field of view lenses are
employed. The cameras are arranged with relative horizontal displacement,
parallel optical axes, overlapping fields of view that cover the acquisition
volume and geometric calibration that allows pixel measurements to be con-
verted to scene measurements. Owing to the geometry of this situation,
three-dimensional points in the viewed scene project to the images as two-
dimensional features; the two-dimensional features associated with a scene
point are imaged with a spatial displacement in the two images that depends
on the distance to the cameras. Correspondingly, measured displacement
between matched image features allows for recovery of the three-dimen-
sional location of a projected scene point through a process of triangulation.
For the particular system of interest, matching between points in the
acquired image pair is accomplished via a correlation search algorithm that
systematically shifts and compares small spatial windows across the images
of concern. During an initial stage of processing, the overall head region is
localized as that region in 3-space that is closest to the acquisition platform.
Subsequently, a facial feature template matching algorithm operates within
the head region to localize the eye region. The coordinates of the eye region
are then used to drive the narrow field of view apparatus to capture a high-
resolution iris image. Operations associated with the wide field of view
apparatus are performed on a specialized image processing accelerator
board. Code for the described algorithms running on this system allows for
continuous generation of 3D coordinates for the eye at a rate of 2 Hz.

The narrow field of view apparatus consists of a pan/tilt mirror assembly,
a fixed focal length lens with computer-controlled focus axis and a stan-
dard monochrome video camera. Eye position estimates delivered by the
wide field of view apparatus are mapped to a pan/tilt/focus triple via a
look-up-table generated as part of system calibration. After an initial
motorized pan/tilt/focus adjustment, processing local to the narrow field
of view apparatus serves to refine the capture quality through better cen-
tering, focusing and a rotational transformation that compensates for
apparent torsional error arising from the pan/tilt steering mirror. All pro-
cessing for this apparatus is performed without any special acceleration on
a 166 MHz PC processor. Final capture time is data-dependent, but is typi-
cally between 2–10 seconds. Acquisition with this overall approach has
allowed for capture of images of quality similar to that achieved with pas-
sive image acquisition platforms (e.g. 300 pixels on the iris diameter and
modulation transfer function empirically capable of supporting iris recog-
nition), albeit while requiring far less subject participation.

3.4 Iris signature representation and matching

Following image acquisition, the portion of the image that corresponds to
the iris needs to be localized from its surroundings. The iris image data can
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then be brought under a representation to yield an iris signature for
matching against similarly acquired, localized and represented irises. The
next three subsections of this chapter discuss issues in localization, repre-
sentation and matching.

3.4.1 Localization

Without placing undue constraints on the human subject, image acquisi-
tion of the iris cannot be expected to yield an image containing only the
iris. Rather, image acquisition will capture the iris as part of a larger image
that also contains data derived from the immediately surrounding eye
region; see, for example Figure 3.5. Therefore, prior to performing iris pat-
tern matching, it is important to localize that portion of the acquired image
that corresponds to an iris. In particular, it is necessary to localize that por-
tion of the image derived from inside the limbus (the border between the
sclera and the iris) and outside the pupil. Further, if the eyelids are
occluding part of the iris, then only that portion of the image below the
upper eyelid and above the lower eyelid should be included.

Interestingly, the image contrast of these various iris boundaries can be
quite variable. For example, owing to the relative spectral reflectance of the
sclera and iris (in particular its melanin pigment) the limbic boundary is
typically imaged with higher contrast in the visible than the infrared por-
tion of the spectrum. For the case of the pupillary boundary, the image con-
trast between a heavily pigmented iris and its pupil can be quite small.
Further, while the pupil typically is darker than the iris, the reverse rela-
tionship can hold in cases of cataract: the clouded lens leads to a significant
amount of backscattered light. Like the other boundaries, eyelid contrast
can be quite variable, depending on the relative pigmentation in the skin
and the iris. The eyelid boundary also can be irregular due to the presence
of eyelashes. Taken together, these observations suggest that iris localiza-
tion must be sensitive to a wide range of edge contrasts, robust to irregular
borders and capable of dealing with variable occlusion.

Reference to how the Daugman and Wildes et al. approaches perform iris
localization further illustrates the issues. Both of these systems make use of
first derivatives of image intensity to signal the location of edges that cor-
respond to the borders of the iris. Here, the notion is that the magnitude of
the derivative across an imaged border will show a local maximum due to
the local change of image intensity. Also, both systems model the various
boundaries that delimit the iris with simple geometric models. For
example, they both model the limbus and pupil with circular contours. The
Wildes et al. system also explicitly models the upper and lower eyelids with
parabolic arcs. In initial implementation, the Daugman system simply
excluded the upper and lower most portions of the image where eyelid
occlusion was most likely to occur; subsequent refinements include explicit
eyelid localization. In both systems, the expected configuration of model
components is used to fine-tune the image intensity derivative informa-
tion. In particular, for the limbic boundary the derivatives are filtered to be
selective for vertical edges. This directional selectivity is motivated by the
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fact that, even in the face of occluding eyelids, the left and right portions of
the limbus should be visible and oriented near the vertical (assuming that
the head is in an upright position). Similarly, the derivatives are filtered to
be selective for horizontal information when locating the eyelid borders. In
contrast, since the entire (roughly circular) pupillary boundary is expected
to be present in the image, the derivative information is used in a more iso-
tropic fashion for localization of this structure. In practice, this fine tuning
of the image information has proven to be critical for accurate localization.
For example, without such tuning the fits can be driven astray by
competing image structures (e.g. eyelids interfering with limbic
localization).

The two approaches differ mostly in the way that they search their
parameter spaces to fit the contour models to the image information. In
order to understand how these searches proceed, let I(x, y) represent the
image intensity value at location (x, y) and let circular contours (for the
limbic and pupillary boundaries) be parametrized by center location,
(xc, yc), and radius, r. The Daugman approach fits the circular contours via
gradient ascent on the parameters (xc, yc, r) so as to maximize

∂
∂ ∫r

G r
I x y
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( ) *
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where G r r r( ) ( / )exp[ ( ) / ]= − −1 2 20
2 2πσ σ is a radial Gaussian with center

r0 and standard deviation σ that smooths the image to select the spatial
scale of edges under consideration, * symbolizes convolution, ds is an ele-
ment of circular arc and division by 2πr serves to normalize the integral. In
order to incorporate directional tuning of the image derivative, the arc of
integration, ds, is restricted to the left and right quadrants (i.e. near vertical
edges), when fitting the limbic boundary. This arc is considered over a
fuller range when fitting the pupillary boundary; however, the lower quad-
rant of the image is still omitted due to the artifact of the specular reflec-
tion of the illuminant in that region (see Section 3.3). Following
localization of the circular boundaries, the eyelids are localized as being
within the limbic boundary by fitting a spline contour parametrization in a
fashion analogous to that used for the circular parametrization. In imple-
mentation, the contour-fitting procedure is discretized with finite differ-
ences serving for derivatives and summation used to instantiate integrals
and convolutions. More generally, fitting contours to images via this type of
optimization formulation is a standard machine vision technique, often
referred to as active contour modeling; see, for example, [35, 54, 72].

The Wildes et al. approach performs its contour fitting in two steps. First,
the image intensity information is converted into a binary edge-map.
Second, the edge points vote to instantiate particular contour parameter
values. The edge-map is recovered via gradient-based edge detection [52,
60]. This operation consists of thresholding the magnitude of the image
intensity gradient, i.e. | ( , ) * ( , )|∇G x y I x y , where ∇ ≡ ( / , / )∂ ∂ ∂ ∂x y while

Chapter 3 · Iris Recognition 75



G x y x x y y( , ) ( / )exp{ [( ) ( ) ]/ }= − − + −1 2 20
2

0
2 2πσ σ2 is a two-dimensional

Gaussian with center (x0, y0) and standard deviation σ that smooths the
image to select the spatial scale of edges under consideration. In order to
incorporate directional tuning, the image intensity derivatives are
weighted to favor certain ranges of orientation prior to taking the magni-
tude. For example, prior to contributing to the fit of the limbic boundary
contour, the derivatives are weighted to be selective for vertical edges. The
voting procedure is realized via Hough transforms [29, 30] on parametric
definitions of the iris boundary contours. In particular, for the circular
limbic or pupillary boundaries and a set of recovered edge points, (xj, yj),
j n=1, ,… , a Hough transform is defined as
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For each edge point (xj, yj), g(xj, yj, xc, yc, r) = 0 for every parameter triple
(xc, yc, r) that represents a circle through that point. Correspondingly, the
parameter triple that maximizes H is common to the largest number of
edge points and is a reasonable choice to represent the contour of interest.
In implementation, the maximizing parameter set is computed by building
H(xc, yc, r) as an array that is indexed by discretized values for xc, yc and r.
Once populated, the array is scanned for the triple that defines its largest
value. Contours for the upper and lower eyelids are fit in a similar fashion
using parametrized parabolic arcs in place of the circle parametrization
g(xj, yj, xc, yc, r). Just as the Daugman system relies on standard techniques
for iris localization, edge detection followed by a Hough transform is a
standard machine vision technique for fitting simple contour models to
images [52, 60].

Both approaches to localizing the iris have proven to be successful in the
targeted application. The histogram-based approach to model fitting
should avoid problems with local minima that the active contour model’s
gradient descent procedure might experience. However, by operating more
directly with the image derivatives, the active contour approach avoids the
inevitable thresholding involved in generating a binary edge map. More
generally, both approaches are likely to encounter difficulties if required to
deal with images that contain broader regions of the surrounding face than
the immediate eye region. For example, such images are likely to result
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from image acquisition rigs that require less subject participation than
those currently in place. Here, the additional image “clutter” is likely to
drive the current, relatively simple, model fitters to poor results. Recent
extensions to the Wildes et al. approach for iris localization take steps
along these directions [9]. Still, complete solutions to this type of situation
most likely will entail a preliminary coarse eye localization procedure to
seed iris localization proper, e.g. as provided by the active sensing
approach descibed in Section 3.3 [18, 26]. In any case, following successful
iris localization, the portion of the captured image that corresponds to the
iris can be delimited. Figure 3.7 provides an example result of iris localiza-
tion as performed by the Wildes et al. system.

3.4.2 Representation

The distinctive spatial characteristics of the human iris are manifest at a
variety of scales. For example, distinguishing structures range from the
overall shape of the iris to the distribution of tiny crypts and detailed tex-
ture. To capture this range of spatial detail, it is advantageous to make use
of a multiscale representation. Both of the approaches to iris signature rep-
resentation that are under discussion make use of bandpass image decom-
positions to avail themselves of multiscale information.

The Daugman approach makes use of a decomposition derived from
application of a two-dimensional version of Gabor filters [24, 31] to the
image data. Since the Daugman system converts to polar coordinates, (r, θ),
during matching, it is convenient to give the filters in a corresponding form
as

H r r r( , ) ( ) ( ) / ( ) /θ ω θ θ α θ θ β= − − − − − −e e ei i0 0 2 2 0 2 2

where α and β co-vary in inverse proportion to ω to generate a set of quad-
rature pair frequency selective filters, with center locations specified by
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Figure 3.7 Illustrative results of iris localization. Given an acquired image, it is necessary to sepa-
rate the iris from the surroundings. Taking as input the iris image shown in Figure 3.5, automated
processing delineates that portion which corresponds to the iris. R. Wildes, Iris recognition: an
emerging biometric technology. Proceedings of the IEEE, 85(9), 1348–1363, 1997 (© 1997 IEEE)



(r0, θ0). These filters are particularly notable for their ability to achieve
good joint localization in the spatial and frequency domains. Further,
owing to their quadrature nature, these filters can capture information
about local phase. Following the Gabor decomposition, the Daugman
approach compresses its representation by retaining only the sign of the
convolution profile. For a filter given with bandpass parameters α, β and ω
and location (r0, θ0) a pair of bits ( , )h hℜ ℑ are generated according to

h Irℜ − − − − − −= ℜ ∫∫1 0 0 2 2 0 2 2if ( ,( ) ( ) / ( ) /e e ei iω θ ψ
ψρ

ρ α θ ψ β ρ ψ ρ ρ ψ) d d⎛
⎝⎜

⎞
⎠⎟ ≥ 0

h Irℜ − − − − − −= ℜ ∫∫0 0 0 2 2 0 2 2if ( ,( ) ( ) / ( ) /e e ei iω θ ψ
ψρ

ρ α θ ψ β ρ ψ ρ ρ ψ) d d⎛
⎝⎜

⎞
⎠⎟ < 0

h Irℑ − − − − − −= ℑ ∫∫1 0 0 2 2 0 2 2if ( ,( ) ( ) / ( ) /e e ei iω θ ψ
ψρ

ρ α θ ψ β ρ ψ ρ ρ ψ) d d⎛
⎝⎜

⎞
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h Irℑ − − − − − −= ℑ ∫∫0 0 0 2 2 0 2 2if ( ,( ) ( ) / ( ) /e e ei iω θ ψ
ψρ

ρ α θ ψ β ρ ψ ρ ρ ψ) d d⎛
⎝⎜

⎞
⎠⎟ < 0

with ℜ ⋅() and ℑ ⋅() capturing the real and imaginary filter outputs, respec-
tively. As originally realized, the parameters r0, θ0, α, β and ω are sampled so
as to yield a 256 byte signature that serves as the basis for subsequent pro-
cessing. Subsequent developments augment this code with an equal
number of masking bytes that serve to distinguish areas that arise from iris
tissue as opposed to artifacts (e.g. specular reflections, eyelashes); how the
mask is computed is not specified [16].

The Wildes et al. approach makes use of an isotropic bandpass decompo-
sition derived from application of Laplacian of Gaussian (LoG) filters [27,
31] to the image data. The LoG filters can be specified via the form

− −⎛
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πσ
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ρ σe /

with σ the standard deviation of the Gaussian and ρ the radial distance of a
point from the filter’s center. In practice, the filtered image is realized as a
Laplacian pyramid [8, 31]. This representation is defined procedurally in
terms of a cascade of small support Gaussian-like filters. In particular, let
w = [1 4 6 4 1}]/16 be a one-dimensional mask and W = wTw be the two-
dimensional mask that results from taking the outer product of w with
itself. Given an image of interest, I, the construction of a Laplacian pyramid
begins by convolving I with W so as to yield a set of low-pass filtered images
gk according to

g W gk k= − ↓( * )1 2
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with g I0 = and ()⋅ ↓2 symbolizing downsampling by a factor of 2 in each
image dimension. The kth level of the Laplacian pyramid lk is formed as the
difference between gk and gk+1, with gk+1 expanded before subtraction so
that it matches the sampling rate of gk. The expansion is accomplished by
upsampling and interpolation:

l g W gk k k= − + ↑4 1 2* ( )

where ()⋅ ↑2 indicates upsampling by a factor of 2 via insertion of a row and
column of zeros between each row and column of the original image. The
generating kernel W is used as the interpolation filter and the factor of 4 is
necessary because 3

4 of the samples in the image are newly inserted zeros.
The resulting Laplacian pyramid, constructed with four levels, serves as the
iris signature for subsequent matching. The difference of Gaussians that
the construction of this representation entails yields a good approximation
to Laplacian of Gaussian filtering [43]. Additionally, it is of note for effi-
cient storage and processing, as lower frequency bands are subsampled
successively without loss of information beyond that introduced by the fil-
tering. In implementation, Laplacian pyramid construction follows in a
straightforward fashion from its procedural definition.

By retaining only the sign of the Gabor filter output, the representational
approach that is used by Daugman yields a remarkably parsimonious rep-
resentation of an iris. Indeed, a representation with a size of 256 bytes can
be accommodated on the magnetic stripe affixed to the back of standard
credit/debit cards [7]. In contrast, the Wildes et al. representation is
derived directly from the filtered image for size on the order of the number
of bytes in the iris region of the originally captured image. However, by
retaining more of the available iris information the Wildes et al. approach
might be capable of making finer-grained distinctions between different
irises. Alternatively, by retaining more information in the representation,
the Wildes et al. approach may show superior performance if less informa-
tion is available in the captured iris image, e.g. due to reduced resolution
imaging conditions. Since large-scale studies of iris recognition are cur-
rently lacking, it is too early to tell exactly how much information is neces-
sary for adequate discrimination in the face of sizable samples from the
human population. In any case, in deriving their representations from
bandpass filtering operations, both approaches capitalize on the multiscale
structure of the iris. For the sake of illustration, an example multiscale rep-
resentation of an iris as recovered by the Wildes et al. approach is shown in
Figure 3.8.

3.4.3 Matching

Iris matching can be understood as a three-stage process. The first stage is
concerned with establishing a spatial correspondence between two iris sig-
natures that are to be compared. Given correspondence, the second stage is
concerned with quantifying the goodness of match between two iris
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signatures. The third stage is concerned with making a decision about
whether or not two signatures derive from the same physical iris, based on
the goodness of match. The remainder of this section describes these three
stages in detail.

3.4.3.1 Correspondence

In order to make a detailed comparison between two iris signatures it is
necessary to establish a precise correspondence between characteristic
structures across the pair. Given the combination of required subject par-
ticipation and the capabilities of sensor platforms currently in use, the key
geometric degrees of freedom that must be compensated for in the under-
lying iris data are shift, scaling and rotation. Shift accounts for offsets of the
eye in the plane parallel to the camera’s sensor array. Scale accounts for off-
sets along the camera’s optical axis. Rotation accounts for deviation in
angular position about the optical axis. Another degree of freedom of
potential interest is that of pupil dilation. The size of the pupil varies with
the level of ambient illumination, subject arousal and various other influ-
ences [1, 17, 50]. As noted in Section 3.2, the details of an iris’s pattern can
vary with the state of pupil size.

Both the Daugman and Wildes et al. approaches compensate for shift,
scaling and rotation in the underlying iris data. For both systems, iris local-
ization is charged with isolating an iris in a larger acquired image and
thereby essentially accomplishes alignment for image shift. Daugman’s
system uses radial scaling to compensate for overall size as well as a simple
model of pupil variation based on linear stretching. The scaling serves to
map Cartesian image coordinates (x, y) to polar image coordinates (r, θ)
according to
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Figure 3.8 Multiscale signature representation for iris matching. Distinctive features of the iris
are manifest across a range of spatial scales.Pattern matching is well served by a bandpass decom-
position spanning high to low spatial frequency. A compact representation results from successive
subsampling of lower frequency bands. The localized iris of Figure 3.7 is shown under such a
multiscale representation. R. Wildes, Iris recognition: an emerging biometric technology. Proceed-
ings of the IEEE, 85(9), 1348–1363, 1997 (© 1997 IEEE)
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where r lies on [0, 1] and θ is cyclic over [0, 2π], while (xp(θ), yp(θ)) and
(xl(θ), yl(θ)) are the coordinates of the pupillary and limbic boundaries in
the direction θ. Rotation is compensated for by brute force search: explic-
itly shifting an iris signature in θ by various amounts during matching.

The Wildes et al. approach uses an image registration technique to com-
pensate for both scaling and rotation. This approach geometrically pro-
jects an image, Ia(x, y), into alignment with a comparison image, Ic(x, y),
according to a mapping function (u(x, y), v(x, y)) such that, for all (x, y), the
image intensity value at (x, y) – (u(x, y), v(x, y)) in Ia is close to that at (x, y)
in Ic. More precisely, the mapping function (u, v) is taken to minimize
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while being constrained to capture a similarity transformation of image
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with s a scaling factor and R(φ) a matrix representing rotation by φ. In
implementation, given a pair of iris images, Ia and Ic, the warping parame-
ters, s and φ, are recovered via an iterative minimization procedure [2]. As
originally implemented, this approach did not compensate for the effects of
pupil dilation. Instead, the fact that a controlled (visible) illuminant was
always in place during image capture was relied upon to bring pupils to a
single size for an individual operator (ignoring effects of arousal etc.).

As with much of the processing that the two approaches under consider-
ation perform, the methods for establishing correspondences between two
irises seem to be adequate for controlled assessment scenarios. Once again,
however, more sophisticated methods may prove to be necessary in more
relaxed scenarios. For example, a simple linear stretching model of pupil
dilation does not capture the complex physical nature of this process, e.g.
the coiling of blood vessels and the arching of stromal fibers [48, 71]. Simi-
larly, more complicated global geometric compensations will be necessary
if full perspective distortions (e.g. foreshortening) become significant.

3.4.3.2 Match goodness

Given the fairly controlled image acquisitions that currently are enforced
in iris recognition systems and the collateral success of extant correspon-
dence mechanisms, an appropriate match metric can be based on direct
pointwise comparisons between primitives in the corresponding signa-
ture representations. The Daugman approach quantifies this matter by
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computing the percentage of mismatched bits between a pair of iris repre-
sentations, i.e. the normalized Hamming distance [32]. Letting A and B be
two iris signatures to be compared, this quantity can be calculated as

1

2048 1

2048

A Bj j
j

j

⊕
=

=

∑

with subscript j indexing bit position and ⊕ denoting the exclusive-OR
operator. (The exclusive-OR is a Boolean operator that equals 1 if and only
if its operands differ.) The result of this computation is then used as the
goodness of match, with smaller values indicating better matches. The
exclusive-OR of corresponding bits in the acquired and database iris repre-
sentations can be calculated with negligible computational expense. This
allows the system to compare an acquired representation with interesting
numbers of database entries (e.g. a raw comparison rate of approximately
105 per second using a 300 MHz processor.) As implemented, this compar-
ison rate is exploited to yield a brute force solution not just to verification,
but also to identification, i.e. sequential examination of each record in
moderate size databases. While this search ability is impressive, identifica-
tion in the presence of significantly larger databases might require a clev-
erer indexing strategy.

The Wildes et al. system employs a somewhat more elaborate procedure to
quantify the goodness of match. The approach is based on normalized corre-
lation between two signatures (i.e. pyramid representations) of interest. In
discrete form, normalized correlation can be defined in the following
fashion. Let p1[i, j] and p2[i, j] be two image arrays of size n × m. Further, let
µ1 1 1 11= = =( / ) [ , ]nm p i ji
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the mean and standard deviation for the intensities of p1, respectively. Also,
let µ2 and σ2 be similarly defined with reference to p2. Then the normalized
correlation between p1 and p2 can be defined as
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Normalized correlation captures the same type of information as stan-
dard correlation (i.e. integrated similarity of corresponding points in the
regions); however, it also accounts for local variations in image intensity
that corrupt standard correlation [60]. This robustness comes about as
the mean intensities are subtracted in the numerator of the correlation
ratio, while the standard deviations appear in the denominator. In imple-
mentation, the correlations are performed discretely over small blocks of
pixels (8 × 8) in each spatial frequency band of the Laplacian pyramid rep-
resentations. A goodness of match is subsequently derived for each band
by combining the block correlation values via the median statistic.
Blocking combined with the median operation allows for local adjustments
of matching and a degree of outlier detection and thereby provides
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robustness against mismatches due to noise, misalignment and occlusion
(e.g. a stray eyelash). As implemented, this method has been applied to the
verification task only.

3.4.3.3 Decision

The final subtask of matching is to evaluate the goodness of match values to
make a final judgement as to whether two signatures under consideration
do (authentic) or do not (impostor) derive from the same physical iris. In
the Daugman approach, this amounts to choosing a separation point in the
space of (normalized) Hamming distances between iris signatures: Dis-
tances smaller than the separation point will be taken as indicative of
authentics; those larger will be taken as indicative of impostors3. An appeal
to statistical decision theory [39, 58] is made in an attempt to provide a
principled approach to selecting the separation point. There, given appro-
priate distributions for the two events to be distinguished (i.e. authentic vs.
impostor), the optimal decision strategy is defined by taking the separation
as the point at which the two distributions cross-over. This decision
strategy is optimal in the sense that it leads to equal probability of false
accept and false reject errors. (Of course, even with a theoretically
“optimal” decision point in hand, one is free to choose either a more con-
servative or more liberal criterion according to the needs of a given instal-
lation.) In order to calculate the cross-over point, sample populations of
impostors and authentics were each fit with parametrically defined distri-
butions. This was necessary since no data, i.e. Hamming distances, were
observed in the cross-over region. Binomial distributions [19] were used
for the empirical fits. A binomial distribution is given as
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is the number of k combinations of n distinguishable items. This formula
gives the probability of k successes in n independent Bernoulli trials. A
Bernoulli trial, in turn, is defined to generate an experimental value of a
discrete random variable v according to the distribution
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empirical evaluations, it appears that neither system has been confronted with this
situation (see Section 3.5).
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with an outcome of v = 1 taken as a success and an outcome of v = 0 taken as
a failure. The use of a binomial distribution was justified for the case of
impostor matches based on the distinctiveness of different irises. That is,
the matching of bits between a pair of representations from different irises
was taken to be a series of Bernoulli trials. However, not all of the bit
matches were taken as independent due to the presence of inherent correla-
tions in iris structure as will as correlations introduced during processing.
Significantly, no such justification was given for the modeling of the
authentics.

In the Wildes et al. approach, the decision making process must combine
the four goodness of match measurements that are calculated by the pre-
vious stage of processing (i.e. one for each pass band in the Laplacian pyr-
amid representation that comprises a signature) into a single accept/reject
judgement. Here, recourse is made to standard techniques from pattern
classification. In particular, the notion that is appealed to is to combine the
values in a fashion so that the variance within a class of iris data is mini-
mized, while the variance between different classes of iris data is maxi-
mized. The linear function that provides such a solution is well known and
is given by Fisher’s Linear Discriminant [20, 22]. This function can be
defined in the following fashion. Let there be n d-dimensional samples q, na
of which are from a set A and ni of which are from a set I . For example, in
the current application each sample corresponds to a set of multiscale
goodness of match measurements, while the classes to be distinguished are
the authentics and impostors. Fisher’s linear discriminant defines a weight
vector ω such that the ratio of between class variance to within class vari-
ance is maximized for the transformed samples ωT q. To formalize this
notion, let µa = ∈( ) /Σq qA ni be the d-dimensional mean for q ∈A and simi-
larly for µi . A measure of variance within a class of data can be given in
terms of a scatter matrix with the form

S q qa a a
T= − −

∈
∑( )( )µ µ

q A

for A and with Si similarly defined for I . The total within class scatter is
given as Sw = Sa + Si. A corresponding measure of variance between classes
can be defined in terms of the scatter matrix

S i ib a a
T= − −( )( )µ µ µ µ

With the preceding definitions in hand, the expression
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describes the ratio of between to within class variance of the transformed
samples ωq. Finally, the use of a little calculus and linear algebra leads to
the conclusion that the ω which maximizes this ratio is given as

ω µ µ= −−S iw a
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Interestingly, Sb does not appear in this formula for ω since it simply scales
the overall result, without otherwise changing the separation. To apply this
discriminant function to classification, a separation point must be defined in
its range: values above this point will be taken as derived from classA; values
below this point will be taken as derived from class I . In the current applica-
tion, the separation point is taken as the midpoint between the transformed
means of the samples fromA and I , i.e. 1

2 ω µ µT
a( )+ i . If the probabilities of

the measurements given either class are normally distributed and have equal
variance, (i.e. p( | ) ( / )exp[ (| | ) / ]q qA = − −1 2 22 2πσ µ σa with σ2 the variance
[19], and similarly for I), then this choice of separation point can be shown
to be optimal (i.e. equal probability of false accept and false reject errors).
However, it is heuristic for the case of iris match measurements where these
assumptions are not known to hold. In implementation, the discriminant
was defined empirically based on a set of iris training data.

While both of the decision methods have performed well to date, the under-
lying data modeling assumptions need to be rigorously evaluated against a
larger corpus of data. Both of the methods rely on the assumptions that the
impostor and authentic populations can each be modeled with single distribu-
tions. A basic tenet of iris recognition is that different irises are highly distinct.
Therefore, it is reasonable to view the distribution of impostors as varying
about a central tendency dictated by some notion of independence, e.g. a 50%
chance of individual bits matching in the Daugman approach or low correla-
tion values for the Wildes et al. approach. Indeed, empirically this seems to be
the case for both approaches. However, there is no such theoretical underpin-
ning for modeling the authentics with a single distribution. In fact, one might
argue that authentics would be best modeled by a mixture of distributions
[63], perhaps even one distribution for repeat occurrences of each iris. From
an empirical point of view, it is of concern that the current decision strategies
are derived from rather small samples of the population (i.e. of the order of 102

or 103). This matter is exacerbated by the fact that little data has been reported
in the cross-over regions for the decisions, exactly the points of most concern.
To properly resolve these issues it will be necessary to consider a larger sample
of iris data than the current systems have employed.

3.4.3.4 A caveat

Both of the reviewed approaches to matching are based on methods that are
closely tied to the recorded image intensities. More abstract representa-
tions may be necessary to deal with greater variation in the appearance of
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any one iris, e.g. as might result from more relaxed image acquisition. One
way to deal with greater variation would be to extract and match sets of fea-
tures that are expected to be more robust to photometric and geometric
distortions in the acquired images. In particular, features that bear a closer
and more explicit relationship to physical structures of the iris might
exhibit the desired behavior. For example, preliminary results indicate that
multiscale blob matching could be valuable in this regard [40, 66]. This
approach relies on the correspondence between the dark and light blob
structures that typically are apparent in iris images and iris structures such
as crypts, freckles, nevi and striations. If current methods in iris pattern
matching begin to break down in future applications, then such symbolic
approaches will deserve consideration. However, it is worth noting that the
added robustness that these approaches might yield will most likely come
with increased computational expense.

3.5 Systems and performance

Following on the foregoing discussion, the main functional components of
extant iris recognition systems consist of image acquisition and signature
representation/matching; see Figure 3.9. Both the Daugman and Wildes et
al. approaches have been instantiated in working systems and have been
awarded US patents [15, 68, 69]. Initial laboratory versions of both systems
have been realized with commercially available hardware components
(optics, illumination, computer workstation to support image processing)
and custom image processing software. Similarly, the described approach
to active image acquistion has been instantiated in a working system and
awarded a US patent [10]. An initial laboratory version of this system was
realized with commercially available hardware components, bolstered with
a special-purpose image processing accelerator board and custom image
processing software. This system was further refined and packaged so that
it could be subjected to field trials [46]. Finally, the Daugman iris recogni-
tion approach has also been introduced as a commercial product, first
through IriScan and subsequently through Iridian [56]. This system
embodies largely the same approach as that of the laboratory system, albeit
with further optimization and use of special-purpose hardware for a more
compact product.

Two reports of laboratory-based experiments with the Daugman system
are available. In the first experiment [14], 592 irises were represented as
derived from 323 persons. An average of approximately 3 images were taken
of each iris. (The time lags involved in repeat captures of a single iris were
not reported.) The irises involved spanned the range of common iris colors:
blue, hazel, green and brown. This preparation allowed for evaluation of
authentics and impostors across a representative range of iris pigmentations
and with some passage of time. In the face of this data set, the system exhib-
ited no false accepts and no false rejects. In an attempt to analyze the data
from this experiment, binomial distributions were fit to both the observed
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authentic and impostor scores, i.e. as previously described during the discus-
sion of matching. The fits were used to calculate the cross-over error rate for
false accepts and false rejects as 1 in 131,000. Further, ′d , a measure of the
separability of two distributions used in statistical decision theory [39, 58],
calculated as the absolute difference of the means, divided by a conjoint mea-
sure of the standard deviations, was found to be 8.4.

In the second experiment with the Daugman system [16], 2,150 iris
images were compared, including 10 images of the same iris for 70 subjects.
In this case the images were acquired with a variety of different image
acquisition platforms. Other details of the experiment were unspecified
(e.g. nature of image acquisition platforms, time lag between repeat acqui-
sitions). Here it was found that ′d was decreased to 7.3. It also was noted
that for a subset of iris images acquired under “ideal” conditions (same
camera with fixed zoom, same illumination, same subject to sensor dis-
tance), it was possible to increase ′d to 14.1. Interpretation of the reported
statistics requires caution. As noted during the discussion of matching, jus-
tification for fitting the observed data with binomial distributions for cal-
culating cross-over error rates is problematic. From a theoretical point of
view, it is not clear why a binomial distribution is appropriate for the case
of authentics. From an empirical point of view, the fits are based on small
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Figure 3.9 Schematic diagram of iris recognition system. Given a subject to be evaluated (left of
upper row) relative to a database of iris records (left of lower row), recognition proceeds in two
major steps. The first step is image acquisition, which yields an image of the subject’s eye region.
The second step is signature representation and matching, which produces a decision, D. For verifi-
cation, the decision is a yes/no response relative to a particular pre-specified database entry; for
identification, the decision is a record (possibly null) that has been indexed relative to a larger set
of entries.



samples of the populations and data is lacking in the critical cross-over
region. Similarly, the calculation of ′d assumed that the distributions were
well characterized by their means and standard deviations, again without
appropriate justification. Indeed, general theoretical analyses of biometric
data suggests that they are not well characterized in this fashion, e.g.
authentic distributions are typically multimodal [63]. With regard to visual
inspection of the particular distributions at hand, it appears that at the
very least they exhibit a pronounced skew. Nevertheless, it is worth noting
that for all cases it was possible to select empirically a single decision point
that allowed perfect separation of the authentic and impostor
distributions.

The Wildes et al. laboratory system also has been the subject of empirical
evaluation [65]. In this study, a total of 60 different irises were represented
as derived from 40 persons. For each iris 10 images were captured: 5 at an
initial session and 5 approximately 1 month latter. Of note is the fact that
this sample included identical twins. Again, the common range of iris
colors (blue, hazel, green and brown) was represented. This preparation
allowed for the same types of comparison as the previously described
experiments. There were no observed false positives or false negatives in
the evaluation of this corpus of data. In this case, statistical analysis was
eschewed owing to the small sample size. However, at a qualitative level, the
data for authentics and impostors were well separated. In subjective
reports, subjects found the system to be unobjectionable.

The laboratory version of the active vision approach to iris image acqui-
sition has been evaluated in terms of its ability to support iris recognition
by using it as the image acquisition “front end” to the Daugman approach
to signature representation and matching. The details of these studies are
less well documented; nevertheless, they are interesting to review as cor-
roborating evidence of the efficacy of iris recognition, especially as the
images are acquired while making fewer demands on the subject. In one
study [26], iris images were acquired from 618 subjects on two occasions;
once for enrollment and once for verification (time lag unspecified). The
verification was 98.9% successful, with all failures coming about as false
rejections. In all cases, evaluation was complete within 10 seconds. The fail-
ures were reported as being due to specular reflections from the eye/
eyewear or, in one case, the subject being outside the capture volume of the
apparatus. The field test prototype of this approach has also been the sub-
ject of tests, both in the lab and in the field [46]. Laboratory tests (with
unspecified number of subjects and other details) led to no false accepts
and a false reject rate of approximately 0.5%. Field trials wherein the
system was used by the Nationwide Building Society in Swindon, UK, ran
for six months with over 1,000 participants. Unfortunately, no quantitative
data on recognition accuracy was reported; however, user acceptance was
reported to be above 90%.

All of the tests described so far were conducted by iris recognition
system developers. Two additional tests of iris recognition have been con-
ducted by independent evaluation teams. Both of these tests have consid-
ered commercial iris recognition systems marketed by IriScan/Iridian. In
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the first of these tests, a preproduction system was evaluated [6]. In this
study the system was installed in a public space at Sandia National Labora-
tories, USA. Subjects consisted of volunteers from the Sandia community.
The study was conducted in two phases. In the first phase, 199 irises were
represented as derived from 122 people. Following enrollment the subjects
made a total of 878 attempts to use the system in identification mode over a
period of 8 days. Of these attempts, 89 false rejects were recorded; however,
for 47 of these cases the subject made a retry and all but 16 of these were
accepted. All of these errors were traced to either reflections from eyewear
that obscured the iris or user difficulty (e.g. difficulty in self-positioning).
No false accepts were recorded. In the second phase, 96 of the people
involved in the first phase attempted an identification relative to a database
with 403 entries, none of which corresponded to the subjects in question.
Once again, no false accepts were recorded. In subjective evaluation, sub-
jects found the system generally unobjectionable; however, some reports of
discomfort with the illuminant were reported.

In the second independent test, a commercially available hardware
system was evaluated using algorithms specially modified to support
testing [42]. This test was conducted in the UK at the National Physics Lab-
oratory and also included evaluations of commercial systems for face, fin-
gerprint, hand, vein and voice recognition. The general test scenario was
that of verification in a normal office environment (albeit with controlled,
near-constant ambient illumination), with cooperative non-habituated
users. The evaluation used 200 volunteers from the test site, extended over a
period of three months and was conducted in accordance with accepted
testing standards in the biometrics community [61]. The “typical” separa-
tion between enrollment and verification was one to two months. Various
statistics were compiled for all systems, including failure to enrol rate,
failure to acquire rates, false match vs. false non-match rates and user
throughput (defined in terms of time differences logged between consecu-
tive transactions). In terms of failure to enrol, iris recognition achieved a
0.5% rate (third worst among systems evaluated) as it failed to enrol a blind
eye. No failures to acquire were logged for iris recognition. Because the
images were selected for storage based on a pre-set matching score
threshold, it was impossible to plot an ROC for false match vs. false non-
match rates. However, using the provided threshold no false matches were
observed in approximately two million cross-comparisons. At this same
threshold approximately 2% false non-matches were observed. To put these
numbers somewhat in perspective, when an evaluated fingerprint system
had its decision threshold set to achieve just one false match (< 0.001%), its
false non-match rate was approximately 7%: apart from iris recognition
this was the lowest false non-match rate for a single false match rate across
all tested systems. Finally, the median throughput for iris recognition was
10 seconds, a number comparable to that of other systems.

Overall, the two iris recognition systems that are being used for illustra-
tion have performed remarkably well under preliminary testing. Empirical
tests of other approaches to automated iris recognition also are generally
positive [5, 38, 53, 59, 73]. However, given that experiments were conducted
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on samples of the order of 102, or in one case 103, (i.e. number of irises in the
experiments) from a population on the order of 1010 (i.e. total number of
human irises), one must be cautious in the extrapolation of these results.
Nevertheless, the results speak in favor of iris recognition as a promising
biometric technology.

3.6 Future directions

Future directions for iris recognition can be thought of in terms of two
broad categories of endeavors: technology development and scientific
inquiry into biometric-based human identification. In terms of technology
development, two major directions for future research are present. One of
these directions comes from consideration of what can be accomplished if
one is willing to accept iris image capture under relatively constrained situ-
ations, e.g. that required by the described passive acquisition systems.
Under such restrictions, further developments could be focused on
yielding ever more compact systems that can be easily incorporated into
consumer products where access control is desired (e.g. automobiles, per-
sonal computers, various handheld devices). While requiring careful atten-
tion to engineering detail (e.g. in miniaturization of optics, algorithmic
optimization), there should be no outstanding obstacles along this path.
Preliminary results along these lines already have been reported [46].

The second major direction for technology development arises as one
attempts to push the operational envelop of iris recognition to include
more unconstrained acquisition scenarios. Can iris recognition be per-
formed at greater subject to sensor distances while remaining unobtrusive?
How much subject motion can be tolerated during image capture? Can per-
formance be made more robust to uncontrolled ambient illumination? Is it
possible for iris recognition to be accomplished covertly, i.e. with the sub-
ject totally unaware that they are under observation? The development of
systems that can respond to these queries will entail consideration of com-
puter vision and image processing techniques for optical and illumination
design, image stabilization, target detection, tracking, image enhancement
and control. To some extent, extant technology can be exploited to marshal
initial attacks along relevant paths. It is likely, however, that additional
basic research in computer vision and image processing will be required to
fully respond to the challenges at hand. As a step along these directions,
Figure 3.10 shows an iris image that was captured at 10 m subject to sensor
distance. Here, a commercially available video camera with 1 m focal
length lens was coupled with a semi-collimated near infrared illumination
source to yield an image with resolution and contrast that has proven suc-
cessful to drive iris recognition at closer distances.

A complementary direction for future research comes about if one thinks
in terms of the science of biometrics-based human identification. At the
most basic level, little is known about the intrinsic information content of
the human iris in support of human identification. While the general
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anatomical basis of iris features are known (as described in Section 3.2),
studies still need to be conducted to reveal the discriminatory information
content of these structures apropos human identification. In particular, at
the level of individual algorithmic approaches to iris signature representa-
tion and matching, studies need to be performed that reveal exactly what
information is required for recognition. For example, one could attempt to
construct something akin to a modulation transfer function (MTF) for a
given approach that specifies the minimal image requirements (e.g. in
terms of spatial frequency content) that are required to support recogni-
tion at various levels of performance. A significant number of human irises
will need to be sampled to produce such characterizations.

At a more operational level of performance analysis, studies of iris recog-
nition systems need to be performed wherein details of acquisition are sys-
tematically manipulated, documented and reported. Parameters of interest
include, geometric and photometric aspects of the experimental stage (e.g.
MTF of the optical platform, level of illumination at the iris, subject to
sensor distance, subject attitude relative to sensor, arrangement of ambient
illuminants), length of time monitored and temporal lag between template
construction and recognition attempt. Similarly, details of captured irises
and relevant personal accessories need to be properly documented in these
same studies (e.g. eye color, eyewear). Along these lines, it is important that
recognition results derived from executing iris recognition algorithms on
this data be reported in a meaningful fashion, i.e. through observation of
accepted standards for reporting recognition rates in the biometrics com-
munity, such as Receiver Operator Characteristics (ROCs) [63] and Rank
Order Analyses [51]. More generally, if iris recognition is to make solid sci-
entific advances, then future tests of iris recognition systems must conform
to accepted practices in the evaluation of biometric devices [55, 61, 63].
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Figure 3.10 Toward iris recognition at a distance. An interesting direction for future research in
iris recognition is to relax constraints observed by extant systems. As a step in this direction, an iris
image captured at 10 m subject to sensor distance is shown.
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4Face Recognition

Chengjun Liu and Harry Wechsler

4.1 Introduction

Face recognition falls into the broadly defined area of biometrics, which is
concerned with the verification and recognition of a person’s identity by
means of unique appearance or behavioral characteristics. Appearance
characteristics include hand, fingerprint, eye, iris, retina and face, while
behavioral characteristics include signature, voice, keystroke and grip. Auto-
mated fingerprint recognition, speaker and speech recognition, and iris and
retina recognition are all examples of “active” biometric tasks. Face recogni-
tion, however, is usually “passive”, as it does not require people’s cooperation
to look into an iris scanner, to place their hands on a fingerprint reader, or to
speak to a close-by microphone. The unobtrusive nature of face recognition
makes it more suitable for wide range surveillance and security applications.
In particular, an automated face recognition system is capable of capturing
face images from a distance using a video camera, and the face recognition
algorithms can process the data captured: detect, track and finally recognize
people sought, such as terrorists or drug traffickers.

Face recognition involves computer recognition of personal identity
based on geometric or statistical features derived from face images [11,
12, 18, 69, 77]. Even though humans can detect and identify faces in a scene
with little or no effort, building an automated system that accomplishes
such objectives is very challenging. The challenges are even more pro-
found when one considers the large variations in the visual stimulus due
to illumination conditions, viewing directions or poses, facial expression,
aging, and disguises such as facial hair, glasses or cosmetics. The enor-
mity of the problem has involved hundreds of scientists in interdisci-
plinary research, but the ultimate solution remains elusive [57, 58, 64, 79].
Face recognition research provides cutting edge technologies in commer-
cial, law enforcement and military applications. An automated vision
system that performs the functions of face detection, verification and rec-
ognition will find countless unobtrusive applications, such as airport
security and access control, building (i.e. embassies) surveillance and
monitoring, human–computer intelligent interaction and perceptual
interfaces, and smart environments at home, in the office, and in cars [12,
18, 57, 59, 69, 79].
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4.2 Background

An automated face recognition system includes several related face pro-
cessing tasks, such as detection of a pattern as a face, face tracking in a
video sequence, face verification, and face recognition. Face detection gen-
erally learns the statistical models of the face and non-face images, and
then applies a two-class classification rule to discriminate between face
and non-face patterns. Face tracking predicts the motion of faces in a
sequence of images based on their previous trajectories and estimates the
current and future positions of those faces. While face verification is
mainly concerned with authenticating a claimed identity posed by a
person, such as “Is she the person who she claims to be?”, face recognition
focuses on recognizing the identity of a person from a database of known
individuals.

Figure 4.1 shows a block diagram of the overall face recognition system.
When an input image is presented to the face recognition system, the
system first performs face detection and facial landmark detection, such as
the detection of the centers of the eyes. The system then implements the
normalization and cropping procedures, which perform the following
three tasks: (1) spatial normalization, which aligns the centers of the eyes
to predefined locations and fixes the number of pixels between the eyes
(interocular distance) via rotation and scaling transformations; (2) facial
region extraction, which crops the facial region that contains only the
face, so that the performance of face recognition is not affected by the fac-
tors not related to the face itself, such as hair styles; and (3) intensity nor-
malization, which converts the facial region to a vector by concatenating its
rows (or columns), and then normalizes the pixels in the vector to zero
mean and unit variance. Finally, the system extracts features with high
discriminating power for face recognition.

Performance evaluation is an important factor for a face recognition
system. The strength and weakness of an automated face recognition
system are evaluated using standard databases and objective performance
statistics. The face recognition vendor tests [63] are designed to evaluate
state-of-the-art vendor face recognition systems, and the detailed perfor-
mance of those competing vendor systems can be found in the reports [9]
and [63]. The FRVT 2002 [63], for example, reported that (1) under normal
indoor illumination, the current state-of-the-art vendor face recognition
systems reach 90% verification rate at a false accept rate of 1%; (2) in out-
door illumination, the best vendor system can only get 50% verification
rate at a 1% false accept rate; and (3) the three-dimensional morphable
models technique [10] is capable of improving non-frontal face recogni-
tion. These results suggest that illumination and pose are still challenging
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research areas for face recognition, and a 3D model-based approach
provides a promising method for dealing with pose variations.

4.3 Face Detection

Face detection is the first stage of an automated face recognition system,
since a face has to be located in the overall image before it is recognized.
Earlier efforts had been focused on correlation or template matching,
matched filtering, sub-space methods, deformable templates etc. [60, 82].
For comprehensive surveys of these early methods, see [12], [69] and [73].
Recent approaches emphasize data-driven learning-based techniques,
such as statistical modeling methods [41, 53, 70, 71, 74], neural network-
based learning methods [67, 68, 74], statistical learning theory and Support
Vector Machine (SVM) based methods [31, 32, 54], Markov random field
based methods [17, 66], and color-based face detection [33].

Statistical methods usually start with the estimation of the distributions
of the face and non-face patterns, and then apply a pattern classifier or a
face detector to search over a range of scales and locations for possible
human faces. Neural network-based methods, however, learn to discrimi-
nate the implicit distributions of the face and non-face patterns by means
of training samples and the network structure, without involving an
explicit estimation procedure.

Moghaddam and Pentland [53] applied unsupervised learning to esti-
mate the density in a high-dimensional eigenspace and derived a max-
imum likelihood method for single face detection. Rather than using
Principal Component Analysis (PCA) for dimensionality reduction, they
implemented the eigenspace decomposition as an integral part of esti-
mating the conditional Probability Density Function (pdf) in the original
high-dimensional image space. Face detection is then carried out by com-
puting multiscale saliency maps based on the maximum likelihood
formulation.

Sung and Poggio [74] presented an example-based learning method by
means of modeling the distributions of face and non-face patterns. To cope
with the variability of face images, they empirically chose six Gaussian
clusters to model the distributions for face and non-face patterns, respec-
tively. The density functions of the distributions are then fed to a multiple
layer perceptron for face detection.

Scheiderman and Kanade [70] proposed a face detector based on the esti-
mation of the posterior probability function, which captures the joint sta-
tistics of local appearance and position as well as the statistics of local
appearance in the visual world. To detect side views of a face, profile images
were added to the training set to incorporate such statistics [71].

Liu [41] recently presented a Bayesian Discriminating Features (BDF)
method for multiple frontal face detection. The BDF method, which is
trained on images from only one database yet works on test images from
diverse sources, displays robust generalization performance. First, the
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method derives a discriminating feature vector by combining the input
image, its 1-D Harr wavelet representation, and its amplitude projections.
Then statistical modeling estimates the conditional probability density
functions, or pdfs, of the face and non-face classes, respectively. While the
face class is usually modeled as a multivariate normal distribution, the non-
face class is much more difficult to model due to the fact that it includes “the
rest of the world”. The estimation of such a broad category is, in practice,
intractable. However, the BDF method derives a subset of the non-faces that
lie closest to the face class, and then models this particular subset as a
multivariate normal distribution. Finally, the Bayes classifier applies the
estimated conditional pdfs to detect multiple frontal faces in an image.

Rowley et al. [67] developed a neural network-based upright, frontal face
detection system, which applies a retinally connected neural network to
examine small windows of an image and decide whether each window con-
tains a face. The face detector, which was trained using a large number of
face and non-face examples, contains a set of neural network-based filters
and an arbitrator which merges detections from individual filters and elim-
inates overlapping detections. In order to detect faces at any degree of rota-
tion in the image plane, the system was extended to incorporate a separate
router network, which determines the orientation of the face pattern. The
pattern is then derotated back to the upright position, which can be pro-
cessed by the early developed system [68].

Hsu et al. [33] presented a color-based face detection method under vari-
able illumination and complex background. First, the method applies a
lighting compensation technique and a nonlinear color transformation to
detect skin regions in a color image. Then it generates face candidates
based on the spatial arrangement of the skin patches. Finally, the method
constructs eye, mouth and boundary maps to verify those candidates.
Experiments show that the method is capable of detecting faces over a wide
range of facial variations in color, position, scale, orientation, pose and
expression [33].

4.4 Face Recognition: Representation and
Classification

Robust face recognition schemes require both low-dimensional feature
representation for data compression purposes and enhanced discrimina-
tion abilities for subsequent image classification. The representation
methods usually start with a dimensionality reduction procedure, since the
high dimensionality of the original space makes the statistical estimation
very difficult, if not impossible, due to the fact that the high-dimensional
space is mostly empty. The discrimination methods often try to achieve
high separability between different patterns. Table 4.1 shows some popular
representation and classification techniques and some methods that apply
these techniques for face recognition.
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4.4.1 Some Representation Techniques and Their Applications to
Face Recognition

Principal Component Analysis is commonly used for deriving low-dimen-
sional representations of input images. Specifically, PCA derives an
orthogonal projection basis that directly leads to dimensionality reduction
and possibly to feature selection [38]. Applying PCA technique to face rec-
ognition, Turk and Pentland [76] developed the well-known “Eigenface”
method, where the eigenfaces correspond to the eigenvectors associated
with the largest eigenvalues of the face covariance matrix. The eigenfaces
thus define a feature space, or “face space”, which drastically reduces the
dimensionality of the original space, and face recognition is then carried
out in the reduced space.

PCA, an optimal criterion for dimensionality reduction, however, does
not necessarily provide for good discrimination, since no discrimination
criteria are considered by the PCA procedure. To improve the discrimina-
tion power of PCA, one can integrate PCA, the optimal representation crite-
rion, with the Bayes classifier, the optimal classification criterion [44]. This
method, named Probabilistic Reasoning Models (PRM) [44], applies first
PCA for dimensionality reduction, and then uses the within-class scatter to
estimate the covariance matrix for each class in order to derive the condi-
tional probability density functions. Finally, the PRM method applies the
Maximum A Posteriori (MAP) rule for classification. The MAP decision
rule optimizes the class separability in the sense of Bayes error and
improves upon the PCA-based methods, which apply a criterion not related
to the Bayes error.

Shape and texture (‘shape-free’ image) coding usually applies a two-
stage process once the face has been located [8, 14, 16, 24, 40, 45]. Coding
starts by annotating the face using important internal and face boundary
points. Once these control points are located, they are aligned using trans-
lation, scaling and rotation transformations as necessary. The average of
these aligned control points defines the mean shape. The next stage then
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Techniques Face recognition methods

Representation methods PCA Eigenfaces [76], PRM [44]

Shape and texture Method [24], EFC [45]

Gabor wavelets Method [39], GFC [46], IGF
[47]

Recognition methods Bayes/MAP Method [52], PRM [44]

FLD/LDA Fisherfaces [6], methods
[75], [25], EFM [44]

ICA Method [22], EICA [42]

Graph matching Elastic bunch graph [80]

Table 4.1 Some representation and classification techniques and their applications to face
recognition.



triangulates the annotated faces and warps each face to the mean shape.
The first stage yields the shape, while the second stage yields the texture.

Beymer [8] introduced a vectorized image representation consisting of
shape and texture. Vetter and Poggio [78] used such a vectorized face repre-
sentation for image synthesis from a single example view. Craw et al. [15]
and Lanitis et al. [40] developed Mahalanobis distance classifiers for face
recognition using the shape and texture representation. The Mahalanobis
distance is measured with respect to a common covariance matrix for all
classes in order to treat variations along all axes as equally significant by
giving more weight to components corresponding to smaller eigenvalues
[15]. Note that the weighting procedure does not differentiate the between-
class scatter from the within-class scatter and it suppresses the former
while reducing the latter. To address this issue and to better distinguish the
different roles of the two scatters, Edwards et al. [24] presented yet another
Mahalanobis distance classifier by using the pooled within-class
covariance matrix. Liu and Wechsler [45] developed an Enhanced Fisher
Classifier (EFC), which applies the enhanced Fisher model on the inte-
grated shape and texture features. Shape encodes the feature geometry
of a face while texture provides a normalized shape-free image. The
dimensionalities of the shape and the texture spaces are first reduced using
principal component analysis, constrained by the Enhanced Fisher Model
(EFM) for enhanced generalization. The corresponding reduced shape and
texture features are then combined through a normalization procedure to
form the integrated features that are processed by the EFM for face
recognition.

The Gabor wavelets, whose kernels are similar to the 2D receptive field
profiles of the mammalian cortical simple cells, exhibit desirable charac-
teristics of spatial locality and orientation selectivity [26]. The biological
relevance and computational properties of Gabor wavelets for image anal-
ysis have been described in [19, 20, 50 and 36]. Lades et al. [39] applied the
Gabor wavelets for face recognition using dynamic link architecture
(DLA). This starts by computing the Gabor jets, and then performs a flex-
ible template comparison between the resulting image decompositions
using graph matching. Based on the 2D Gabor wavelet representation and
labeled elastic graph matching, Lyons et al. [48, 49] proposed an algorithm
for two-class categorization of gender, race and facial expression. The algo-
rithm includes two steps: registration of a grid with the face using either
labeled elastic graph matching [39, 80] or manual annotation of 34 points
on every face image [49]; and categorization based on the features
extracted at grid points using Linear Discriminant Analysis (LDA). Donato
et al. [22] recently compared a method based on Gabor representation with
other techniques and found that the former gave better performance.

Liu and Wechsler [46] presented a Gabor–Fisher Classifier (GFC)
method for face recognition. The GFC method, which is robust to illumina-
tion and facial expression variability, applies the enhanced Fisher
linear discriminant model or EFM [44] to an augmented Gabor feature
vector derived from the Gabor wavelet transformation of face images. To
encompass all the features produced by the different Gabor kernels one

102 Biometric Systems



concatenates the resulting Gabor wavelet features to derive an augmented
Gabor feature vector. The dimensionality of the Gabor vector space is then
reduced under the eigenvalue selectivity constraint of the EFM method to
derive a low-dimensional feature representation with enhanced discrimi-
nation power. Liu and Wechsler [46] recently developed an Independent
Gabor Features (IGF) method for face recognition. The IGF method derives
the independent Gabor features, whose independence property facilitates
the application of the PRM method [44] for classification.

4.4.2 Some Classification Techniques and Their Applications to Face
Recognition

The Bayes classifier yields the minimum error when the underlying proba-
bility density functions are known. This error, called the Bayes error, is the
optimal measure for feature effectiveness when classification is of concern,
since it is a measure of class separability [27]. The MAP Bayes decision rule
thus optimizes the class separability in the sense of the Bayes error and
should yield the optimal classification performance [27].

Moghaddam et al. [52] proposed a probabilistic similarity measure for
face image matching based on a Bayesian analysis of image deformations.
The probability density functions for the intra-object and extra-object
classes are estimated from training data and used to compute a similarity
measure. The PRM method, introduced by Liu and Wechsler [44], improves
face recognition performance by integrating PCA (the optimal representa-
tion criterion) and the Bayes classifier (the optimal classification
criterion).

Fisher Linear Discriminant (FLD), or the LDA, is a commonly used crite-
rion in pattern recognition and recently in face recognition [6, 25, 44, 75].
Intuitively, FLD derives a projection basis that separates the different class
means as far as possible and compresses the same classes as compactly as
possible. Based on FLD, a host of face recognition methods have been
developed to improve the classification accuracy and the generalization
performance [6, 25, 44, 45, 46, 75]. The Fisherfaces method [6], similar to
the methods presented by Swets and Weng [75] and by Etemad and
Chellappa [25], first applies PCA to derive a low-dimensional space, where
FLD is implemented to derive features for face recognition. These FLD-
based methods, however, are superior to the Eigenface approach for face
recognition only when the training images are representative of the range
of face (class) image variations; otherwise, the performance difference
between the Eigenface and Fisherface approaches is not significant [75].

The FLD procedure, when implemented in a high-dimensional PCA
space, often leads to overfitting [44]. Overfitting is more likely to occur for
the small training sample size scenario, which is the typical situation for
face recognition [61]. One possible remedy for this drawback is to generate
additional data artificially and thus increase the sample size [25]. Another
solution is to analyze the reasons for overfitting and propose new models
with improved generalization abilities [44]. The EFM method, developed
by Liu and Wechsler [44], addresses (concerning PCA) the range of
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principal components used and how it affects performance, and (regarding
FLD) the reasons for overfitting and how to avoid it. The EFM method
improves the generalization performance of the FLD-based scheme by bal-
ancing the spectral energy criterion for sufficient representation and the
eigenvalue spectral requirement for good generalization. This requirement
suggests that the selected PCA eigenvalues account for most of the spectral
energy of the raw data when the (trailing) eigenvalues of the within-class
scatter matrix in the reduced PCA subspace are not too small [44].

Independent Component Analysis (ICA), a powerful technique for blind
source separation, [13, 35, 37], is also applied to possible feature selection
and face recognition by Donato et al. [22]. According to Barlow [3–5], an
important characteristic of sensory processing in the brain is ‘redundancy
reduction’, or reducing dependency and deriving independent features.
Such independent features might be learned under the criterion of sparse-
ness [5] or independence [4]. Field [26] described a compact coding
scheme in terms of sparse distributed coding, whose neurobiological
implications were examined in [56]. The resulting sparse image code pos-
sesses a high degree of statistical independence among its outputs [55].
Bell and Sejnowski [7] developed an unsupervised learning method that is
based on information maximization to separate statistically independent
components in the inputs.

Donato et al. [22] applied a neural network approximation to demonstrate
the possible application of Independent Component Analysis (ICA) to face
recognition. Liu and Wechsler [42] described an Enhanced ICA (EICA)
method and its application to face recognition. The EICA method derives the
independent components of face images by using a statistical algorithm
rather than a neural network approximation. EICA, whose enhanced gener-
alization performance is achieved using a sensitivity analysis, operates in a
reduced PCA space, whose dimensionality is determined using an
eigenvalue spectrum analysis. The motivation for this aspect of EICA is that
during whitening, the eigenvalues of the covariance matrix appear in the
denominator and that the small trailing eigenvalues mostly encode noise. As
a consequence the whitening component, if used in an uncompressed image
space, would fit for misleading variations and thus generalize poorly to new
data. Liu and Wechsler [42] have also assessed the performance of the EICA
alone or when combined with other discriminant criteria such as the
Bayesian framework or the FLD criterion. Discriminant analysis shows that
the ICA criterion, when carried out in the properly compressed and whit-
ened space, performs better than the Eigenface and Fisherface methods for
face recognition, but its performance deteriorates when augmented by addi-
tional criteria such as the MAP rule of the Bayes classifier or the FLD. The
reason for the last finding is that the Mahalanobis distance embedded in the
MAP classifier duplicates to some extent the whitening component, while
using FLD is counter to the independence criterion intrinsic to EICA.

Graph matching has the potential for achieving face recognition
invariant to affine transformations or localized facial expression changes.
However, the graph nodes have to be manually defined to associate the cor-
responding nodes in the different graphs [80]. Lades et al. [39] presented a
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dynamic link architecture (DLA) for face recognition. Wiskott et al. [80]
further expanded on DLA when they developed an elastic bunch graph
matching method to label and recognize human faces. Faces are repre-
sented by labeled graphs, based on a Gabor wavelet representation of face
images. The graphs of new faces are extracted by an elastic graph matching
process and can be compared using a simple similarity function [80].

4.5 Kernel-Based Methods and 3D Model-based
Methods for Face Recognition

Kernel-based methods, such as kernel PCA, kernel FLD, and SVM, over-
come the limitations of the linear approaches by nonlinearly mapping the
input space to a high-dimensional feature space. Theoretical justifications
of applying kernel-based methods to face recognition stem from Cover’s
theorem on the separability of patterns, which states that nonlinearly sepa-
rable patterns in an input space are linearly separable with high probability
if the input space is transformed nonlinearly to a high-dimensional feature
space [30]. Computationally, kernel methods take advantage of the Mercer
equivalence condition and are feasible because the dot products in the
high-dimensional feature space are replaced by a kernel function in the
input space, while computation is related to the number of training exam-
ples rather than the dimension of the feature space.

Scholkopf et al. [72] showed that kernel PCA outperforms PCA using an
adequate nonlinear representation of input data. Mika et al. [51] presented
a kernel FLD method whose linear classification in the feature space corre-
sponds to a powerful nonlinear classification in the input space. Phillips
[62] proposed an SVM-based face recognition algorithm for both face veri-
fication and recognition, and demonstrated its superior performance over
a PCA-based method. Yang [81] presented face recognition results by
applying the kernel FLD method to two data sets: the AT&T data set con-
taining 400 images of 40 subjects and the Yale data set containing 165
images of 11 subjects. Experimental results show that the kernel FLD
method achieves lower error rates in face recognition than ICA, Eigenface
or Fisherface methods [81].

3D methods, or 3D model-based methods [2, 10, 34, 83], provide potential
solutions to pose invariant face recognition [63]. 3D face models are usu-
ally derived from laser-scanned 3D heads (range data) or reconstructed
using shape from shading [2, 10, 34, 83]. Hsu and Jain [34] proposed a
method of modeling 3D human faces based on a triangular mesh model
and individual facial measurements encoding both shape and texture
information. The method provides a potential solution to face recognition
with variations in illumination, pose and facial expression. Zhao and
Chellappa [84] presented a method which applies a 3D model to synthesize
a prototype image from a given image acquired under different lighting
and viewing conditions.
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4.6 Learning the Face Space

The idea of learning the face space has been motivated by natural scene
encoding, which takes advantage of intrinsic image statistics while seeking
to derive a natural (“universal”) basis [28, 55]. The derived basis functions
have been found to closely approximate the receptive fields of simple cells
in the mammalian primary visual cortex. The receptive fields resemble var-
ious derivative-of-Gaussian (DoG) functions: spatially localized, oriented
and bandpass [55]. Barlow [4] argues that such receptive fields might arise
from unsupervised learning, subject to redundancy reduction or minimum
entropy coding. Olshausen and Field [55] derive localized oriented recep-
tive fields based on a criterion of sparseness, while Bell and Sejnowski [7]
use an independence criterion to derive qualitatively similar results.

The rationale behind a natural basis is to allow for the efficient deriva-
tion of suitable image representations corresponding to the intrinsic struc-
ture of sensory signals. The intrinsic structures are essential for processes
such as image retrieval and object recognition. Once the natural basis has
been derived, no additional training is necessary and both the training and
the test images on future tasks are represented in terms of the already avail-
able natural basis. The natural basis, however, also has its drawbacks, i.e. it
might be too general to properly encode for a specific task. Regarding face
recognition, the class of objects to be represented is quite specific, i.e.
human face images, possibly indexed by gender, ethnicity and age; one
should thus seek and learn the face space basis rather than a “universal”
and all-encompassing natural basis. This observation also fits with knowl-
edge that the “bias/variance dilemma may be circumvented if we are
willing to purposely introduce bias, which then makes it possible to elimi-
nate the variance or reduce it significantly” [29]. Learning low-dimen-
sional representations of visual objects with extensive use of prior
knowledge has also been recently suggested by Edelman and Intrator [23]
who claim that “perceptual tasks such as similarity judgment tend to be
performed on a low dimensional representation of the sensory data. Low
dimensionality is especially important for learning, as the number of
examples required for attaining a given level of performance grows
exponentially with the dimensionality of the underlying representation
space”.

4.6.1 Evolutionary Pursuit

The problem we address now is that of learning the face space(s) from large
and diverse populations using evolution as the driving force. The dimen-
sions (“BASIS”) for the face space, to be evolved using Genetic Algorithms
(GAs), are such that their “fitness” is enhanced and driven by the classifica-
tion/discrimination (“cognitive”) and representational (“perceptual”) fac-
tors referred to earlier, and the interplay between the complexity, the cost
(“dimension”) and the (categorical) density of the face space on one hand,
and the trade-offs between faithful face reconstruction (“representation”)
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and the expected classification accuracy (“guaranteed risk”) for the face
classifier, on the other hand. The quality of the face space is also driven by
the diversity encountered while learning the face space. Characteristic of
both co-evolution and active learning methods, challenging training sam-
ples would be boosted and thus given extra weight while assessing the
fitness of the face space.

The fundamental problem, that of finding the proper mix of cognitive
(“classification”) and perceptual (“preprocessing”) processes, and in the
process deriving the optimal projection basis for face encoding, can be
addressed using Evolutionary Pursuit (EP) [43]. In analogy to (explor-
atory) pursuit methods from statistics, EP seeks to learn an optimal face
space for the dual purpose of data compression and pattern classification.
The challenges that EP has successfully met on limited population types are
characteristic of sparse functional approximation and statistical learning
theory. Specifically, EP increases the generalization ability of the face
recognizer as a result of handling the trade-off between minimizing the
empirical risk encountered during training (“performance accuracy”), and
narrowing the predicted risk (“confidence interval”) for reducing the guar-
anteed risk during future testing on unseen probe images. The prediction
risk, corresponding to the penalty factor from regularization methods,
measures the generalization ability of the object classifier, and it is driven
by the regularization index corresponding to class separation. EP imple-
ments strategies characteristic of genetic algorithms for searching the
space of possible solutions in order to determine the optimal projection
basis. EP starts by projecting the original images into a lower-dimensional
and whitened PCA space. Directed but random rotations of the basis vec-
tors in this space are then searched by GAs where evolution is driven by a
fitness function defined in terms of performance accuracy (“empirical
risk”) and class separation (“confidence interval”).

Evolutionary computation represents an emerging methodology
motivated by natural selection. Evolution takes place by maintaining
one or more populations of individuals, each of them a candidate solu-
tion, and competing for limited resources in terms of placing offsprings
in future generations. The competition is implemented via selection
mechanisms that choose from the dynamically changing populations
due to the birth and death of individuals. The selection mechanisms
evaluate the fitness value 10 of individuals based on some fitness cri-
teria (fitness functions), while the population evolves via genetic opera-
tors that reflect the concept of inheritance (offsprings resemble their
parents). When the fitness functions lack an analytical form suitable for
gradient descent or the computation involved is prohibitively expensive,
as is the case when the solution space is too large to search exhaustively,
one alternative is to use (directed) stochastic search methods for non-
linear optimization and variable selection. The unique exploration
(variations farther away from an existing population) and exploitation
(minor variations of the more fit parents) ability of evolutionary com-
putation guided by fitness values has made it possible to analyze very
complex search spaces.
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Learning the face space requires EP to search through a large number of
possible subsets of rotated axes in a properly whitened PCA space. The
rotation angles (represented by strings of bits) and the axis indicators
(indicating whether the axes are chosen or not) constitute the form of the
search space whose size (2 to the power of the length of the whole string) is
too large to search exhaustively. The number and choice of
(nonorthogonal) axes in the subsets and the angles of rotations are evolved
using genetic algorithms. GAs work by maintaining a constant-sized popu-
lation of candidate solutions known as individuals (“chromosomes”). The
power of genetic algorithms lies in their ability to exploit, in a highly effi-
cient manner, information about a large number of individuals. The search
underlying GAs are such that breadth and depth – exploration and exploi-
tation – are balanced according to the observed performance of the indi-
viduals evolved so far. By allocating more reproductive occurrences to
above average individual solutions, the overall effect is to increase the pop-
ulation’s average fitness.

Evolution is driven by a fitness function formulated as follows:

ς ς ς( ) ( ) ( )F F F= +a gλ

where F encompasses the parameters (such as the number of axes and the
angles of rotations defining each chromosome solution) subject to
learning, the first term ς a ( )F records performance accuracy, i.e. the empir-
ical risk, the second term ς g ( )F is the generalization index, i.e. the pre-
dicted risk, and λ is a positive constant that indicates the importance of the
second term relative to the first one. Accuracy indicates the extent to which
learning has been successful so far, while the generalization index gives an
indication of the expected fitness on future trials. By combining those two
terms together with a proper weight factor λ, GA can evolve balanced
results with good recognition performance and generalization abilities.
The fitness function has a similar form to the cost functional used by regu-
larization theory [65] and to the cost function used by sparse coding [55].
The cost functional of the former method exploits a regularization param-
eter to control the compromise between a term of the solution’s closeness to
the data and a term indicating the degree of regularization (‘quality’) of the
solution, while the cost function of the latter method uses a positive con-
stant to achieve a balance between a term of information preserving and a
term assessing the sparseness of the derived code.

4.6.2 Face Recognition Using Evolutionary Pursuit

We consider now the application of the EP method to learning the face
space for face recognition [43]. The experimental data consists of a subset
of 1,107 images from the FERET database, with three frontal images for
each of 369 subjects. For the first 200 subjects, the third image is acquired at
low illumination, while for the remaining 169 subjects the three face images
are acquired during different photo sessions. The last acquired image for
each subject is called the “probe”. Two images of each subject are used for
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training, with the remaining “probe” image used for testing. In other words,
the training set includes 738 images while the test set has 369 images. The
images are cropped to a size of 64 × 96 pixels and the eye coordinates are
manually located. The image background is uniform and the face regions
are not masked. Masking, as it has been usually implemented, deletes areas
of the image outside the face outline, retaining only the face proper. The
effect of such deletions on recognition performance is discussed in [45].
Shape-free face recognition methods avoid this problem by using the shape
of the outline encoded by a number of control points for subsequent
alignment and normalization [14].

Starting from a 30-dimensional PCA space, the EP method derives 26
vectors as the optimal basis for the learned face space. Note that while for
PCA the basis vectors have a natural order (the descending magnitudes of
the eigenvalues associated with each vector), this is not the case with the
projection basis derived by EP due to the rotations involved during the evo-
lutionary process. The natural order characteristic of the principal compo-
nents reflects the representational aspect of PCA and its relationship to
spectral decomposition. The very first principal components encode
global image characteristics, in analogy to low-frequency components. EP,
on the other hand, is a procedure geared primarily towards recognition and
generalization. It is also worth pointing out that while PCA derives
orthogonal basis vectors, EP’s basis vectors are usually not orthogonal.
Orthogonality is a constraint for optimal reduced-space signal representa-
tion, but not a requirement for pattern recognition. Actually, non-
orthogonality has been known to have great functional significance in bio-
logical sensory systems [21].

The EP face space approach using 26 basis vectors yields 92% recogni-
tion performance at this database size when testing on “sequestered” face
images unavailable during training. This compares favorably against
Eigenface and Fisherface methods [43]. To assess the statistical signifi-
cance of the experimental results, we implemented McNemar’s test [1] to
determine whether or not there is strong statistical evidence to indicate
that the EP method improves recognition performance over Eigenface and
Fisherface methods. We found that the EP method improves face recogni-
tion performance at a statistically significant level.

4.7 Conclusion

This chapter has surveyed recent research in face detection and recogni-
tion, discussed performance of the current face recognition systems, and
presented promising research directions. In particular, face detection
methods reviewed include statistical, neural network-based and color-
based approaches. Face recognition methods surveyed include PCA-based
approaches, shape and texture-based approaches, Gabor wavelet-based
approaches, approaches applying the Bayes classifier or MAP, FLD or LDA,
ICA, and graph matching. Some kernel-based methods and 3D model-
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based methods for face recognition are discussed. These methods provide
new research directions for potential solutions to facial recognition under
conditions of pose and illumination variation, which recent vendor tests
show are challenging issues for face recognition. Finally, a method of
learning the face space using evolutionary pursuit is also presented.
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5Elements of Speaker
Verification

Herbert Gish

5.1 Introduction

The activities of automatic speaker verification and identification have a
long history going back to the early 1960s [1–3] in which we see the emer-
gence of various pattern recognition techniques and statistical methods
and exploration of features and feature selection methods. However, theo-
ries were not well supported by experimental evidence, and the selected
features were insufficient, perhaps because of limited computing
resources. With advent of more powerful computer resources and larger
and better annotated corpora such as the Switchboard Corpus [4] there has
been steady progress over the years, using more sophisticated statistical
models and training methods. In this chapter we review the current work
on speaker verification (SV) technology, describing the basic processes
and factors that affect the performance of the SV process.

5.1.1 The Speaker Verification Problem

The problem of speaker verification is that of corroborating the identity of
speakers from their voices. Our basic assumption is that the voice produc-
tion apparatus singularly characterizes the acoustic waves and emanations
that we interpret as words and sounds with the identity of the speaker. In
order to establish an identity from these acoustic events we need a model
that characterizes a speaker’s voice. Once we have created a model from the
available speech samples we are then be able to verify that an utterance
from an enrolled or target speaker (i.e. a speaker for which we have training
data) by evaluating speech that is claimed to be from the speaker with the
speaker model that we have created. If the collected speech data fits the
model then we will affirm the speech as having come from our enrollee or, if
not, reject the claim.

While the above paragraph gives the essence of speaker verification we
must now face the steps necessary to accomplish this task. The first step is
the representation of speech itself. The goal of this step is to represent the
speech in such a way that we have features that characterize the speech pro-
cess in an economical way suitable for the subsequent modeling process.
Our desire for economy is to keep the dimensionality of the representation
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sufficiently low so as to reduce burdens on modeling process. At the same
time we want to retain sufficient information in the representation such as
to keep the impairment of the identification process to a minimum.

The representation that we choose provides us with the features from
which we will construct the model for the speaker. Basically, the choice for
the representation of speech defines a feature space and the training data
fills up the feature space with feature vectors. When we are given a speech
utterance that is asserted to be from a particular enrolled speaker the ques-
tion becomes that of determining whether the collection of features gener-
ated by the utterance in question “matches” the training data.

In classical pattern recognition problems we are typically given a single
feature vector and asked whether or not it is from the training set. The SV
problem differs from the classical pattern recognition problem in that we
are comparing the test collection to the training collection and not just
determining the membership of a single observation.

While it is possible to formulate the speaker verification problem as just
comparing test data to training data, and some speaker verification sys-
tems have been built in this fashion, it has been found to be much more
effective to formulate the speaker verification problem as one in which we
ask whether:

� the test data matches the training data from the target speaker, or
� the test data more closely matches the data from other speakers.

This comparative approach makes an important difference in perfor-
mance and is justified on both theoretical grounds as well as intuitive
grounds. This process of making a decision on the basis of a comparison is
a means of model normalization, and more will be said about this later.

The intuition for the comparative approach is that if we are scoring data
that has distortions and biases these will be mitigated by comparing the
target speaker’s model to the models of other speakers. The theoretical jus-
tification is a consequence of Bayes’ Theorem. That is, if we want to deter-
mine whether our observation x was generated by target speaker T we need
to compute P(T|x), the probability of speaker T having produced the utter-
ance that generated the observed features x. From Bayes’ Theorem we can
write

pP T x
p x P T

p x
T( | )

( ) ( )

( )
=

whereP xT ( )is the probability of observing features x given using the model
for speaker T, P(T) is the prior probability that speaker T has spoken, and
(very important) p x( ) is the probability of observing features x irrespective
of who was speaking.

In a nutshell, a good deal of what transpires in speaker verification work
deals with the features x that are generated for an utterance: selection of the
models P xT ( ) and p x( ). In the Bayes formulation, p x( ) can actually contain
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the model for the target speaker T. If we consider p x( )as an additive mixture
of all speakers we can write

p x p x p xT A( ) ( ) ( ) ( )= + −α α1

where P xA ( ) represents all speakers other than the target speaker and α is
the weighting on the target speaker model, and α is greater than 0 and less
than 1.

We now can write

P T x
P T
p x p xA T

( | )
( )

[( ) ( )]/ ( )
=

+ −α α1

which explicitly shows the dependence of the probability of the target
speaker as a function of the ratio of the likelihoods for the two classes, i.e.
the class of features for the target speaker T and class A of all speakers other
than the target speaker, T.

In Figure 5.1 we illustrate our view of the underlying structure of the ver-
ification problem. We see that the target speaker fills up part of feature
space, and other speakers (often called the cohort speakers or the universal
background “speaker”) will overlap the target speaker. The different
regions of feature space correspond to different phonetic units and we may
find that two speakers overlap in one part of space while they do not
overlap very much in another.

If we again let P xT ( ) denote the probability density function (pdf) for the
target speaker, i.e. the speaker that claims an identity, and let P xA ( ) denote
the pdf for an alternate speaker or speakers (or a composite of speakers),
then this alternate set when constructed from a collection of models from
other individuals is termed a cohort set [5], and when it is created from a
composite of speakers it is often referred to as a universal background
model (UBM) [6, 7]. We form a score based on the pdfs for each of the
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speakers as a first step in the classification process. The score is simply the
log likelihood for each of the pdfs for the test data, i.e.

s p xT T
i

N

i=
=
∑ log ( )

1

for the target speaker and

s p xA A
i

N

i=
=
∑ log ( )

1

for the alternate

where N is the number of feature vectors, xi, observed. A decision is made
that the claimed identity is true if the score difference (the log likelihood
ratio)

s s s thrT A T A T A, = − ≥ −

otherwise the claim is rejected. Here thrT A− is the threshold value for com-
paring the target T against the alternative A.

The setting of the threshold determines the size of the errors that the ver-
ification system will make. There are two types of error to be concerned
with: (1) the error of missing a target, PM, when the target speaker is
rejected incorrectly and (2) the error of false acceptance or false alarm, PFA,
when an impostor speaker is accepted as the target speaker.

The adjustment of the threshold enables the trade-off between the two
types of error. Increasing the threshold will reduce the frequency of false
acceptances by demanding an increase in the difference in the scores of
the target and alternative models. The price now paid for such a change in
threshold is that it is now more difficult for acceptance to occur when the
target is actually present, resulting in an increase in the false dismissals.
This trade-off between the two errors is characterized by a ROC (Receiver
Operating Characteristic) curve which is a plot of the probability of cor-
rect acceptance, which is just1−PM versus PFA. Quite often a variant of the
ROC is currently employed: the DET curve (the detection error trade-off
curve [8]), since it allows for a more direct comparison of errors by plot-
ting PM versus PFA directly. This is done on a logarithmic scale for easier
reading of the smaller error region. In Figure 5.2 a sample DET curve has
been plotted.

The use of the likelihood ratio between the pdf of the target speaker and
that of the alternate choice is fundamental to statistical decision making
[9]. How it is actually implemented will depend on a variety of consider-
ations and can be quite important to system performance. For example, in
speaker verification there are choices for this alternate model, usually
consisting of a cohort set or, if enough data is available, a UBM. In either
case it is believed that the best performance is achieved when this alter-
nate model is drawn from a population of speakers that share characteris-
tics with the target speaker, such as gender and channel. Keeping the
alternate model narrowly focused does, however, allow impostors that are
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not incorporated in the alternate model to be an outlier for the alternate
model as well as the target model. An outlier is evaluated in the poorly
estimated tails of the distributions and can easily give rise to false accep-
tances. This is an important practical consideration and can be mitigated
by disallowing the acceptance of a target speaker when low values of like-
lihoods are observed.

Our characterization of speaker verification in terms of pdfs is perhaps
the most important approach to the speaker verification problem, but there
are a variety of other approaches, some of which will be noted below.

In the following we will consider the issues of modeling and coping with
variability that are the main issues for designers of SV1 systems. We will
also focus, for the most part, on the problem of text-independent verifica-
tion. “Text-independent” means that there is no a priori knowledge of the
text spoken by the speaker.
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1 In references to the literature we will not distinguish those papers that are dealing
with the identification problem, i.e. the determination of who the speaker is, from
the SV problem, since the underlying technology will apply to both tasks.



5.2 Features and Models

5.2.1 Speech Features

It is in the selection of the features that we encounter the distinctive charac-
teristics of the speech process in defining this speaker verification pattern
recognition problem. At the heart of the problem is to distinguish one per-
son’s speech production mechanism from another person’s. Given that
speech is considered, at least as an initial approximation, to be a time-
varying linear filter (our vocal tract) operating on signal sources (glottal
pulses or noise generators), a reasonable feature set would characterize the
signal produced by the filter acting on the signal source. Since the spectral
domain has achieved great success in characterizing filtering operations as
well as in other aspects of speech analysis, it is natural that it forms the
basis of the features used. The time-varying character of the speech process
is captured by performing the spectral analysis at short time intervals and
repeating the analysis periodically.

Within the framework of time-varying spectral methods, a variety of fea-
tures have been considered for the problem of speaker verification. At this
point in the evolution of speaker verification, a set of features has been con-
verged upon that are employed by the majority of systems that perform
speaker verification as well as speech recognition. This convergence has
occurred because of a persistent edge in performance that goes to systems
that utilize these features. These are the Mel-frequency Cepstral Coeffi-
cients, usually referred to as MFCCs. These speech features seem particu-
larly well suited to density function models such as mixture models or
Hidden Markov Models (HMMs).

The Mel-frequency represents a warping of the frequency band that is
linear from 0 to 1 kHz and logarithmic at the higher frequencies, and the
analysis is performed over this warped axis (in principle). This warping
function has its origins in the human perception of tones. The speech
signal is constrained to a bandwidth of about 150–3500 Hz for telephone
speech and about 50 Hz–8 kHz for broadband communications. The
cepstral features are obtained by analyzing the Mel-scaled speech every
0.01 seconds over a time interval of about 20 milliseconds (nominally) in
duration. This yields the Mel-scale spectrum and the Fourier coefficients
of the logarithm of this function are produced. Depending on the system
there are about 12–20 such coefficients produced every 0.01 seconds. These
coefficients, MFCCs, are used to generate cepstral derivatives by differ-
encing techniques, resulting in about 24 to 40 features and sometimes
second derivatives. One or more normalized energy features also employed
to round out the basic feature set.

The cepstra are in effect the lower-order Fourier coefficients of the log
magnitude spectrum. By staying with the low-order coefficients the varia-
tion in the spectrum, induced by the pulsed nature of the vocal tract excita-
tion, has minimal effect.
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5.2.2 Speaker Models

Speaker models enable us to generate the scores from which we will make
decisions. As in any pattern recognition problem the choices are numerous,
and include the likes of neural networks, Support Vector Machines,
Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs), as
well as combinations of the various approaches. While some models are
capable of exploiting dependency in the sequence of feature vectors from
the target speakers, the current state-of-the-art modeling approaches,
based on Gaussian Mixture Models, treat the sequence of feature vectors as
independent random vectors. While we shall initially consider models that
do not exploit time dependence, we will consider those that do in Section
5.3 when we briefly consider text dependence.

The choice of model to use for a particular application will depend on the
specific circumstances in any particular situation, although the choice,
even to the expert, may not be clear. The major factors that will influence
any choice are the amount of data available for the speaker models and the
nature of the verification problem (is it text-independent or text-
dependent?) and the level of performance that is desired.

5.2.2.1 The Gaussian Mixture Model

At the heart of today’s state-of-the-art speaker verification systems is the
Gaussian Mixture Model (GMM). This is a probability density function
(pdf) that itself consists of a sum of multivariate Gaussian density func-
tions. Being a mixture of Gaussians, it has the ability to place mass where
collections of data training data exist. Additionally, its parameters can be
readily estimated by Maximum Likelihood (ML) training procedures
including the EM (Estimate-Maximize) algorithm [10], a well-known itera-
tive algorithm for finding the ML estimate. In practice, each speaker has a
GMM that is trained for them individually and the likelihoods generated
from the GMM form the basis for generating the speaker scores from which
a decision is made with regard to a speaker’s identity. In addition to ML
training methods it can also be trained by discriminative and adaptive
methods that we describe below.

The probability density function is given for speaker S by the sum (or
“mixture”) of M Gaussian pdfs:
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is the multivariate Gaussian density function, D is the dimension of the fea-
ture vector x, µi, S is the mean of each Gaussian pdf (indexed by distribution
and speaker) and the wi,S are positive weights that sum to unity. Typically
the covariance matrix, Σ, for each of the terms in the mixture is taken as
diagonal to reduce computational complexity and storage requirements.

5.2.2.2 Considering the Models

While there are a variety of ways of viewing model choices, an important
and perhaps insightful way for speaker verification applications is through
the approach taken to training them. The different approaches to training
are connected to the amount of training data available and provide a good
initial approach to dealing with the issues of model selection. A taxonomy
of approaches to training includes class conditional training, adaptive
training and discriminative training. This taxonomy should be considered
as a rough guide, since it is possible for the models to fall into more than
one category, and the categories can also show some similarities. Further-
more, there is a connection between the training procedure and model nor-
malization, i.e. the use of the alternate model.

5.2.2.3 Class Conditional Modeling – Maximum Likelihood Training

When employing probability density functions for speaker models an
important approach is that of class conditional density estimation. This is
nothing more than training the models for the speakers individually from
the data collected for the particular target speaker. In the case of GMMs as
well as other families of probabilities, the parameters of the models are typ-
ically estimated by the Maximum Likelihood (ML) criterion. If we let
p xS ( ; )θ denote the pdf of observed features, x, for speaker S, then the ML
estimate of the model parameters, θ, is specified by

� max ( ; )θ θθ= arg Sp x

Quite often there is no direct method for determining the ML estimate,
and often iterative methods are employed. An important iterative training
method for GMMs is the previously noted EM algorithm [10], which is
employed quite frequently in speaker verification as well as speech recog-
nition problems.

While the model for the target speaker has been estimated in a class con-
ditional manner, that is, without knowledge of the alternative choice or
choices for the speaker, the target speaker model is still employed with the
use of an alternative model (e.g. cohort speakers or UBM), when a decision
is made about the speaker’s claimed identity.

The alternative model will consist of a collection of speaker models that
have been trained in much the same way that the model has been trained
for the target speaker. It can be a large set used for all target speakers, but
can also be a set of speakers that are selected from the larger set and work
especially well with the target speaker. The likelihood generated from this
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alternative model is usually the average of the likelihoods of all the
speakers in the set. There are many variants in their use, such as averaging
just the scores from the top-scoring cohort speakers.

Another alternative, which we will discuss below, is the Universal Back-
ground Model (UBM), which is a composite model constructed from the
utterances of many speakers. The speakers that are employed for this model
will typically be selected to match the target speaker population in one or
more ways, such as gender and channel. Reynolds et al. discuss some of the
issues in building a UBM in [11]. We have already noted in Section 5.1.1 the
potential difficulties of matching the target too closely.

5.2.2.4 Class Conditional Models – Discriminative Training

We have discussed above the training of class conditional models with the
traditional Maximum Likelihood approach. The process is one of finding
the model parameters, whether done by an EM algorithm or other algo-
rithm, to maximize the likelihood of the model. If the models were correct
and there was a sufficient amount of training data available we could, with
no loss in performance, stay with training of models in the class
conditional manner.

When we go to discriminative training procedures we are acknowledging
the usually correct assumption of model and data inadequacy. This is not to
say that discriminative training can solve all our problems with speaker
verification, but that it is a useful alternative. The discriminative training
of models is concerned with the important and relevant question of “How
should I select the parameters of my model or models such that we maxi-
mize the performance on our goal of speaker separability?”. In order to
accomplish this we need to move away from the ML criterion and employ as
a training criterion the actual loss function that will be employed in the
evaluation of an SV system or some other criterion that is highly correlated
with our performance metric.

The performance of an SV system is typically measured as some function
of an ROC or DET curve. For example, this can be the detection probability
at a certain false acceptance rate or the equal error rate operation point or
the area under part of a ROC curve. If the model parameters can be directly
trained to the specific measurement criterion that is employed then it can
be expected that performance improvements can be obtained even when
working with the same class of models such as GMMs or HMMs that can be
used for class conditional training.

Some of the early work using discriminative training methods in speech
applications was with speech recognition systems [12, 13]. Speaker verifi-
cation systems have more recently explored the use of discriminative
training methods, e.g. [14–17]. Rosenberg et al. [14] describe a speaker ver-
ification model in which the criterion of total number of errors was
employed, i.e. the number of false acceptances and false dismissals. The
performance gain of class conditional methods seemed substantial when
employing HMMs, which we will briefly discuss below. Heck and Konig
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[17] employ discriminative techniques to optimize a speaker verification
system at a particular operating point.

5.2.2.5 Class Conditional Models via Adaptation

The process of creating speaker models via adaptation starts with a generic
model for a speaker and uses the data collected from the target speaker to
tailor the generic model to the speaker. If we consider the generic model as
a prior probability distribution we can view the process of model adapta-
tion in the Bayesian framework of parameter estimation. See Reynolds et
al. [11] for a discussion of a system based on this approach.

The generic model, often referred to as a universal background model
(UBM) is typically modeled with a GMM and trained with utterances from
hundreds of speakers. To the extent that the collection of speakers is kept as
similar as possible to the target speaker, an economy is achieved in mod-
eling the UBM. For example, creating a model consisting of just males or
females is basic. The use of GMMs with of the order of 2000 mixture compo-
nents is not uncommon.

The GMM is a particularly flexible model for the purposes of speaker
adaptation. The process of adapting a model to a target speaker is to calcu-
late, for each feature vector, the likelihood for each of the terms of the UBM
mixture model. This likelihood is then converted into the probability that
the feature vector came from each of the terms. That is, Pr(i|x), the proba-
bility that the feature vector x is from the ith Gaussian pdf in the mixture is
computed. This probability is then employed in the computation of new
means and variances for each of the Gaussians in the mixture. These new
means and variances are interpolated with the original values to give new
parameters for the Gaussian pdfs in the mixture as well as new weights. If
for some terms of the original mixture there are no non-zero probabilities
for any of the features, that term will remain unchanged in the new model.

One of the advantages achieved by this modeling approach is the effi-
cient use of training data. The process of adaptation is incorporating into
the UBM the specific speaker differences. Encoding of differences can be
much more data-efficient than training a complete model. Another aspect
of the adaptation process is that when we look at it as a process of esti-
mating differences between the target speaker and the UBM we are in some
sense also creating a discriminatively trained model, albeit without an
explicit discriminative criterion.

The use of adaptation methods in conjunction with a UBM is a way to
make effective use of large amounts of available speaker data. If such data is
not available or if the data that is available is not a good match to the condi-
tions and channel of the target speaker then this approach becomes less
useful.

5.2.2.6 Other Class Conditional Models

It is possible to employ this class conditional approach with other than pdf
models for the speaker. For example, in nearest neighbor classification the
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collection of feature vectors themselves becomes the model for the speaker.
In this case the classification process would take the feature data for a test
speaker, and based on the distances of the features to the two classes, deter-
mine a score for the data. An approach based on these ideas was developed
by Higgins et al. [18] and gave good performance.

5.2.2.7 Inherently Discriminative Approaches

Class conditional models that have discriminative training imposed on
them via the imposition of a discriminative training criterion, such as we
have discussed above, form one class of discriminatively trained models.
The other class is that for which discrimination is inherent in the approach.
Such approaches include neural networks, Support Vector Machines
(SVM), and classification trees to name just a few (see [19] for a description
of the previously mentioned techniques). What these approaches have in
common is that, from the outset, the training process involves the separa-
tion of two or more classes from each other (e.g. the target speaker from the
non-target speaker). This is done either implicitly or explicitly. The result is
effectively to create a decision boundary between the classes of interest. In
the case of SVM, a linear function in feature space is employed to separate
the classes. Although this approach employs a linear function of features,
the features can be nonlinear functions of the cepstra that can result in very
nonlinear boundaries with respect to cepstra. Classification trees employ
recursive feature selection methods for determining boundaries to sepa-
rate classes. Neural networks do not directly go after a decision boundaries
but rather create a model for P(speaker | observations) which is inherently
discriminative, since this method of training the model needs observations
from both speaker and non-speaker and the optimization criteria that are
employed are usually strongly correlated with maximizing correct
classifications.

These discriminative techniques can all be used as the basis for a speaker
verification system. For example, Schmidt and Gish [20] applied SVM tech-
niques to the SV problem and Farrell et al. [21] employed a system that
combined classification trees with neural networks to perform verifica-
tion. There are many other examples.

5.2.2.8 Model Selection

We have described above a wide variety of models that have been employed
in various speaker identification applications. The selection of the appro-
priate model for a particular application is still an art, and a variety of
approaches should be considered. Currently GMMs have shown themselves
to be adaptable to a wide variety of situations and should be one of the con-
tenders in almost any application. However, any of the discriminative
approaches, such as neural networks, offer the possibility of being more
effective in situations with limited training data, since they use all the
training data to find the decision boundary between classes rather than
modeling classes separately and then combining the separate models.
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5.3 Additional Methods for Managing Variability

Statistical models, given enough training data, should be able to handle all
the variability that we will encounter under test conditions. However, we
are usually somewhat data-starved and we must resort to other techniques
in order to improve SV performance. Below we will discuss some of the
approaches.

5.3.1 Channel Normalization and Modeling

We consider the channel to be the entire communication link over which
the speaker’s voice travels to the listener. The fact that this channel can be
different at the time of verification than at the time of speaker enrollment
can result in major degradations in verification performance if not dealt
with. Of course, the usual statistical modeling approaches cannot account
for this source of variability because they have not heard the speaker on
this particular channel during the enrollment process.

The modeling alternative is to perform some type of channel normaliza-
tion. The process of normalization is that of mitigating the effect of the
channel based upon its inherent characteristics. If we assume that the
channel can be modeled by a linear, time-invariant filter, then we can
readily predict the effect of the channel on our cepstral speech features. If
we let cs,n denote a cepstral vector from only the speech at time n and let cr,n
denote the corresponding received cepstral vector, then we can write

c c cn n nr, s, ch,= +

where cch,n is the cepstral contribution from the channel. The channel con-
tribution is additive because the cepstral coefficients are the Fourier coeffi-
cients of a log spectrum. We also note that the contribution from the
channel, cch,n, will not actually depend on the index, n, because of our
assumption of time invariance of the channel.

Thus we see that time differences in the received cepstra will not depend
on the channel component. In particular, if we removed the mean value
of all the cepstra in an utterance we will have performed the standard
channel normalization called Cepstral Mean Subtraction (CMS). While the
use of this method of normalization can be quite effective, it does destroy
some speaker information. Since speakers have their own average cepstral
value, i.e. cs,n has a speaker-dependent mean value, CMS will remove this
as well. However, when channel variation is an issue the loss in speaker
information will be inconsequential to the improvements obtained by
normalization.

While the assumptions of channel linearity and time-invariance may not
be strictly true, the merits of such a normalization can be seen by its cen-
tering of data about the origin in feature space to partially compensate for
the effects of channels that can cause shifts in the data.
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5.3.1.1 Other Methods for Dealing with the Channel

When we observe a speaker over an unknown linear time-invariant
channel we have seen that in cepstral feature space the speaker has been
shifted to new place. We have also seen that we can compensate for this shift
by altering the features through the process of cepstral mean subtraction
so that this shift is eliminated, albeit at the cost of losing some speaker
information.

Thus, by this process, we have created new features that are less sensitive
to channel variability. The question some researchers have pursued is
whether there are features that are highly robust to channel variation and
at the same time carry significant amounts of speaker-dependent
information.

One of the more important classes of feature candidates has been for-
mant-related features [22, 23]. A formant is a location of a peak in the short-
term spectrum, i.e. a resonant frequency of the vocal tract. Variations in the
glottal pulse timings [23] and fundamental frequency [24] have also been
examined. While all these features do carry speaker information and do
have a degree of channel invariance, difficulties in extracting these features
and modeling them have limited their utility. Some recent work by Murthy
et al. [25] using a front end that produced spectral slope information
showed significant performance improvements.

Another approach to the channel variability problem is to treat the
channel as a random disturbance and integrate its variability directly into
the scoring process for the speaker. The challenge with this approach is to
estimate a probabilistic model for the channel and perform the integration.
Gish et al. [26] modeled the time-invariant channel as a Gaussian random
vector and were able to compute the effect of the channel randomness on
the speaker model, obtaining useful gains in performance.

A recent and fairly ambitious approach for dealing with the channel has
been developed by Teunen et al. [27]. In their approach they have con-
structed a channel detector, employing it to detect the type of channel over
which the speech is received. If the current channel differs from that used
when modeling the speaker, then MAP adaptation methods are employed
to create a model for the target speaker under the current channel type.
This approach seems to make some headway on the mismatched-channel
problem, but it currently does not appear to be more effective than a
handset normalization technique that is discussed below.

5.3.1.2 Score Normalization

In much of the recent speaker verification literature much work has been
devoted to the subject of score normalization. The aim of this work is to
counter variability in scoring for the purpose of allowing scores from dif-
ferent target speakers to be evaluated as a single collection of scores. In
such a situation of score combination, if target speaker B always has better
scores with his model than any impostor, i.e. perfect verification perfor-
mance, and has his scores combined with those of speaker C, who also has
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perfect verification performance, the evaluation of their scores as a single
set could be rather poor unless some normalization is performed. This can
happen because without normalization the impostor scores for speaker C
can be, for example, greater than the non-impostor scores for speaker B.

The approaches to dealing with this problem involve simple transforma-
tions that convert the scores to zero mean and unit variance. That is, if
s kT A, ( ) is the kth impostor score generated in training for the target
speaker, and we let µ( ( )),s kT A denote the mean and σ( ( )),s kT A denote the
standard deviation of all the impostor scores against this target speaker,
scores for this target can be normalized by

s k
s k s k

s kT A
T A T A

T A
, ,

, ,

,
( )

( ) ( ( ))

( ( ))norm =
− µ

σ

When these transformation parameters are generated using impostor
speakers from a set withheld (or “sequestered”) during the training pro-
cess, the norm is called the Z-norm. When the impostor scores are gener-
ated during the testing phase from impostor speakers within the actual test
data, the norm is referred to as the T-norm. Although it might also be pos-
sible to do a similar type of normalization using “genuine” scores for each
target speaker, this is typically are not done due to lack of a sufficient
number of target speaker scores.

Normalizations can also be generated when transmission is over a tele-
phone channel where there are two different hand-set types (carbon button
and electret). This is called the H-norm. In this case one needs to be able to
detect the type of hand-set in use in the training and the test phases to be
able to apply the appropriate normalizations.

In all the above cases the shift and scaling transformation employed
cannot change the rank ordering of scores for a given speaker or channel
condition. They will enable a verification system to operate with a detec-
tion threshold that is not dependent on the speaker or the channel. For an
extensive discussion of normalization techniques, see Auckenthaler et al.
[28].

5.3.2 Constraining the Text

Thus far we have been considering text-independent verification – the case
where there is no constraint on the text spoken. In those situations, such as
access control, where it is possible to have the speaker utter a known
phrase, performance of an SV system can be greatly improved. When the
text is known in advance there is the advantage of being able to have models
that are targeted to the way the speaker says all parts of the utterance as well
as having the sequential structure. These two factors in systems can bring
about major gains over text-independent approaches.

One of the approaches originally employed in this text-dependent situa-
tion was a non-statistical, template-based method called dynamic time-
warping (DTW). An example of such a template-based system is presented
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by Furui in [29]. In this type of approach there was an attempt to match the
string of features produced by the speaker against a stored template. The
matching allowed for what was assumed to be normal variability in speaker
rhythm. A dynamic programming algorithm was employed to determine
the best alignment between the feature strings in the received speech and
the stored template. Such approaches are still in use today because of their
ability to produce useful results with very limited amounts of training data
and modest amounts of computation. When sufficient training data are
available the method of choice is that of Hidden Markov Models (HMMs)
[30] which form the basis of state-of-the-art speech recognition systems
and are much more efficient than DTW methods in characterizing the
variability in the speech process.

The HMM consists of a sequence of states with a GMM at each state.
Words consist of a sequence of phonetic units and a three-state HMM is
typically used to model a phonetic unit. Sometimes the HMM will be used
to model an entire word. At the risk of oversimplification, we can consider
an HMM to be a sequence of GMMs each tuned to a different part of each
word. Because of the state transition probabilities in the HMM model, the
states included for evaluation can be variable. Although with the use of
constrained text the actual acoustic models have increased in complexity,
almost everything else has remained the same. For example we are still con-
cerned with cohort models, discriminative training and channel normal-
ization. The previously cited paper by Rosenberg et al. [14] considers an
HMM-based verification system that is also discriminatively trained.
Below we will describe a verification systems that are based on HMM
speech recognition technology (see Section 5.5).

5.4 Measuring Performance

We have already noted that we can measure the performance of a speaker
verification system by its probability of a false dismissal versus the proba-
bility of false acceptance at a given threshold setting. As we change the sys-
tem’s detection threshold we end up with a collection of values that give the
DET (Detection Error Trade-off) curve. While this is a fairly straightfor-
ward concept, how one should proceed from the collection of scores for
individuals to the system DET curve is not uniquely defined.

For any individual, since there are typically only a few target speaker scores,
a DET curve will be highly discontinuous. We show in Figure 5.3 a DET curve
for a single target speaker for which we have a small number of target test sam-
ples and significantly more impostor scores. One approach that is used by the
National Institute of Standards and Technology in their annual evaluations
[31] is to treat all the individual scores from individual speakers as if they were
from one speaker and create the composite DET curve. This requires that a
great emphasis be placed on normalizing scores, as we have discussed above,
in order to avoid severe degradations in measured performance due to the
incommensurate scores from different target speakers.
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If one’s system has speaker- and/or channel-dependent thresholds then
such normalizations are not necessary and composite DET curves pro-
duced by employing such normalizations can actually be misleading indi-
cators of system performance. In the case of systems with speaker-
dependent thresholds (and no channel detection, for example) a more
appropriate way of combining the scores would be by combining the indi-
vidual DET curves, e.g. for a given PFA average all the PMs. While this proce-
dure does not require score normalizations, adjustments may be needed for
variations in the number of scores provided by individual speakers. The
point is, however, that the method of performance measurement should be
in tune with the way the system will be employed. Also note that the two
examples presented do not exhaust the possible methods for developing
DET curves for collections of speakers from the various scores of
individual speakers.

While the DET or ROC curves provide a great deal of information about
SV system performance, it is often desirable to characterize the perfor-
mance of a system by a single number in order to facilitate system compari-
sons. The number often employed is the equal error rate (EER), the point on
the DET or ROC where the probability of a miss is equal to the probability
of false acceptance. The EER has found wide acceptance because it is easy to
understand, even though it may not be a desirable operating point for a
practical system. Another single measure of system performance called the
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detection cost function (DCF) involves assigning costs to the two different
types of error. Ultimately a user needs to determine the performance fac-
tors of most importance and develop the measures appropriate for the
application.

5.4.1 How Well do These Systems Perform?

Clearly, there are so many factors that affect the performance of a system that
any numbers presented must be highly qualified. The factors affecting per-
formance include the amounts of training data and the duration of the evalu-
ation data, the variability and types of channels employed, the protocols
employed in certain systems such as using additional prompts for the target
speaker, the constraints on the text, and others. Notwithstanding these
caveats, it is probably useful to provide the reader with some numbers.

We can nominally think of text-independent verification systems with
modest amounts of training data, test data and channel variation as having
an EER in the 5% to 20% range. I include such a number in order for the
reader to have some sense of performance range, as vague as it is. A system
to be described below [39], which employed large amounts of training and
test data and applied several sources of information in verifying speakers,
measured less than a 1% EER. For text-dependent systems we can have
EERs that can be an order of magnitude smaller that the numbers quoted
for text-dependent systems, again depending on many factors.

5.5 Alternative Approaches

In the approaches described below, we stay with the statistical likelihood
view of the speaker verification problem. The speech recognition
approaches we describe bring feature time-dependence, as well as new
knowledge sources, to bear on the verification problem. The systems that
employ these new sources of information can bring about major improve-
ments in verification performance if sufficient data is available for training
and testing. The second approach we consider is more narrowly focused
and shows that by judicious model selection, likelihood ratio approaches
can create robust models that give excellent performance and require sig-
nificantly less computation than GMMs.

5.5.1 Speech Recognition Approaches

The approaches that we have considered thus far, except when we were con-
sidering the constraints of text dependency, have treated the cepstra
extracted from the speech as independent events in time, and have not
exploited any of the higher level information in the speech process (e.g. pho-
netic categories), relying primarily on the general characteristics of an indi-
vidual’s vocal production mechanism for the purpose of identification.
While there have been some attempts at using various categories of phonetic
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units in the verification process the discriminative gains obtained from
their employment was mitigated by the inability to reliably extract them
from speech over communication channels. However, with improvements in
both speech and phonetic recognizers these approaches have become
important alternatives to the memoryless approaches relying on low-level
information.

An early advocate of the use of speech recognizers for speaker identifica-
tion applications was Dragon Systems [32, 33]. Their approach focused on
the recognizer’s ability to provide higher-level acoustic knowledge (con-
text-independent phonetic units) about speakers. To train the models they
adapted their speaker-independent recognizer to target speakers by
employing standard Baum–Welch HMM training procedures. The evalua-
tion process entailed performing speech recognition on a test utterance
and comparing the scores on the target speaker-trained phonetic unit with
the scores obtained by the speaker-independent recognizer. This compar-
ison provided normalized scores upon which the decision was made.

While the Dragon approach fared reasonably well in most of its direct
comparisons to other techniques, it fell short of the performance obtained
by state-of-the-art GMM approaches. In these comparisons, the scenarios
were those of rather limited available training and test data – a difficult
place to operate with a knowledge-intensive approach.

Related to the above was the use of a speech recognizer by Kimball et al.
[34] for a text-dependent application, although the motivation for the
choice was the limited amount of training data available for each speaker.
In their application, only one training sample was available for each
speaker. This training sample was used to adapt a speaker-independent
recognizer by means of Maximum Likelihood Linear Regression (MLLR)
methods. The adaptation parameters effectively became the speaker
model. The score produced by the adapted recognizer on the test utterance
became the target speaker’s score that was normalized by the scores from
cohort speakers. The system performed well with the interesting property
that overall performance was unaffected when tests were performed with
handsets different from those used in training.

5.5.2 Words (and Phonetic Units) Count

The two approaches described above both employed speech recognition
systems and used the speech recognizer to produce acoustic scores for the
target speaker. In the paper by Gauvain et al. [35], a speaker identification
system based on a phone recognizer was described. The training of the
acoustic models for target speakers was accomplished by adaptation and
since the model was a fully connected HMM, i.e. transitions permitted
between all phones at any time, the model was, to a degree, capturing the
target speaker’s use of language in learning the transitions between
phones. This implicit learning of the speaker’s language or idiolect can be
quite important in improving performance.

While the approach presented by Gauvain incorporated the language
patterns of the speaker implicitly, there has been more recent work
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incorporating the language patterns of the target speaker explicitly.
Doddington [36] demonstrated that frequently occurring bigrams, i.e.
word pairs, contain a great deal of speaker-specific information. His exper-
iments were done on the Switchboard conversational speech corpus
employing the transcriptions of the conversations. The bi-grams that were
found to contain the speaker dependent information were typically con-
tent-free word pairs, such as “it were”, “you bet” and “so forth”. Extracting
speaker information from the speaker’s language, as one might expect,
required much more training than has typically been employed in evalua-
tions. The work of Andrews et al. [37] demonstrated that word-based
speaker information could be captured by phonetic recognition systems.
They showed that significant speaker information was contained in tri-
phone (sequences of three phones) occurrence frequencies. They also dem-
onstrated that useful results could be obtained even if the phonetic
recognizer was not in the language of the target speaker.

The natural extension of the proceeding work was to combine language
information with acoustic information. This extension was done by Andrews
et al. [38] and showed that the two sources of information complement one
another. The exploitation of large amounts of training and test data for
speaker identification purposes was further advanced in a project that was
part of the Johns Hopkins 2002 Speech and Language Workshop [39]. At this
workshop, the use of acoustic, lexical and prosodic information was
explored. The different components were effectively combined to achieve
very good performance for speaker verification on conversational speech.

5.5.3 Models Exploring the Shape of Feature Space

Statistical modeling through the use of the likelihood ratio plays a key role
in SV. Employing likelihood ratios, however, does not necessarily imply the
use of GMMs. Under the assumption that a speaker’s model is character-
ized by a single Gaussian pdf, combined with the assumption that the mean
of the cepstral data is a source of noise due to channel variation, one is led
to a likelihood ratio test for speaker models that score the covariance struc-
ture of the models being compared. Thus this model ignores the fine struc-
ture of the speech, working with the shape that a speaker’s features form in
feature space. In [40], Gish introduced the notion of comparing the shapes
of feature spaces through the scoring of the relative eigenvalues of
covariance matrices. Zilca et al. [41] consider measures of shape and T-
norm scaling of scores in conjunction with channel detection to produce a
near state-of-the-art system working in the cellular phone environment.
This system requires significantly less computation than GMMs.

5.6 Summary

The problem of speaker verification is challenging due to the inherent vari-
ability in both the speech of individuals and the transmission channels.
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Statistical modeling and pattern recognition techniques have been able to
tame some of this variability. Different sources of speaker information are
now being used effectively in combination to improve verification perfor-
mance. While good progress has been made in recent years, the important
problem of verifying the identity of a speaker over a channel different from
that used to obtain the speaker’s training data still offers challenges for the
future.
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6Technology Evaluation of
Fingerprint Verification

Algorithms
D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman and A. K. Jain

6.1 Introduction

In the last few years, many academic and industrial research and develop-
ment groups have created new measurement techniques and new acquisi-
tion sensors for automatic fingerprint recognition. Fingerprint-based
biometric systems represent a significantly growing commercial segment
for pattern recognition applications [9]. Nevertheless, given the lack of
standards, in the past most developers have generally performed only
internal tests over self-collected databases. Few standardized benchmarks
have been available for comparing developments in fingerprint verifica-
tion. This deficiency has unavoidably led to the dissemination of con-
fusing, incomparable and irreproducible results, sometimes embedded in
research papers and sometimes enriching the commercial claims of
marketing brochures.

The only public domain data sets have been the (US) National Institute of
Standards and Technology (NIST) CD-ROMs [21, 22] containing thousands
of images scanned from paper cards where fingerprints were impressed by
rolling inked fingers from “nail to nail”. These images differ significantly
from those acquired directly from the finger by “live-scan” optical or solid
state sensors. Although these collections of “rolled” images constitute an
excellent data set for benchmarking forensic AFIS (Automated Fingerprint
Identification Systems) [12] and fingerprint classification development [4,
10], they are not well-suited for testing “online” fingerprint systems [9]
commonly used in access control and civilian AFIS applications (i.e.
driver’s licensing and social service systems). In 1998, NIST released a data-
base containing digital videos of live-scan fingerprint data [23]. As this
database was specifically collected for studying the effects of both finger
rotation and plastic skin distortion on the online acquisition process [5, 6],
it models only certain fingerprint variations and it is not applicable to the
general evaluation of fingerprint verification algorithms.

The aim of the Fingerprint Verification Competition (FVC), organized by
the authors for the first time in 2000, was to attempt to establish a common
basis for better understanding, within both academia and industry, the
state-of-the-art and the future development needs of fingerprint tech-
nology. Analogous efforts have been carried out for other biometric
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technologies (e.g. face [13, 16], and voice [2, 17]) and for other more clas-
sical pattern recognition tasks [1, 8, 18, 19]. With the thought that an inter-
national open competition could boost interest and give results larger
visibility, the 15th International Conference on Pattern Recognition (ICPR)
(ICPR 2000) was chosen as the forum for announcing our results. In late
spring 1999, the FVC2000 web site [7] was set up to broadly publicize this
event and we directly invited several companies and research groups
known to us to take part.

The authors believe that the FVC2000 protocol, databases and results
have been useful to all practitioners in the field, not only as a benchmark to
improve their methods, but also for enabling an unbiased evaluation of
algorithms. However, as with all benchmarks, there are limitations to the
general applicability of results. From the beginning, we stated that the com-
petition was not meant as an official performance certification of the par-
ticipant biometric systems, as:

� The databases used in this contest have not been acquired in a real envi-
ronment and according to a formal protocol [2, 17, 20, 24] (also refer to
[25] for an example of performance evaluation on real applications).

� Only parts of the participants’ software are evaluated, and this by using
images from sensors not native to each system. Fingerprint-based bio-
metric systems often implement proprietary solutions to improve
robustness and accuracy (e.g. quality control modules to reject poor
quality fingerprints, visual feedback to help users in optimally posi-
tioning their fingers, use of multiple fingerprint instances to build more
reliable templates etc.), and these contributions are here discounted.

According to the definitions of [17] and [20], FVC2000 should be con-
ceived as a technology evaluation (with some analogies with the FERET [16]
and the NIST Speaker Verification [2] competitions). In fact, quoting [2]:

The goal of a technology evaluation is to compare competing algorithms from
a single technology. Testing of all algorithms is done on a standardized data-
base collected by a “universal” sensor. Nonetheless, performance against this
database will depend upon both the environment and the population in which
it was collected. Consequently, the “three bears” rule might be applied,
attempting to create a database that is neither too difficult nor too easy for the
algorithms to be tested. Although sample or example data may be distributed
for developmental or tuning purposes prior to the test, the actual testing must
be done on data which has not been previously seen by algorithm developers.
Testing is done using “off-line” processing of the data. Because the database is
fixed, results of technology tests are repeatable.

FVC2000 received great attention from both academic and commercial
organizations. On the one hand, it allowed developers to unambiguously
compare their algorithms; on the other, it provided the first overview of the
state of the art in fingerprint recognition and shed some light on finger-
print individuality [28]. Specifically, in FVC2000:
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� Eleven algorithms were submitted (7 academic, 4 commercial).
� Four databases were collected (one of them was synthetically generated).
� Synthetic fingerprint generation [3, 29] was validated as an effective

instrument for comparing algorithms and in-house improvement of
methods.

� A CD-ROM containing the four databases and a detailed report was cre-
ated, more than 80 copies of which have been requested by major institu-
tions and companies in the field. The web site [7] has been visited more
than 20,000 times since September 2000.

� Several scientific groups active in the field are currently using FVC2000
databases for their experimentation, allowing them to fairly compare
their approaches to published results.

� Some companies which initially did not participate in the competition
requested to certify their performance on the FVC2000 benchmark after
the competition [7].

The interest aroused by FVC2000, and the encouragement we received,
induced us to set up a second competition. In the organization of FVC2002
[30], we took into account advice we received by experts in the field and by
reviewers of the FVC2000 paper [31]. By January 10, 2002 (the deadline for
FVC2002 registration), we had received 48 registrations (19 academic, 29
industrial), far more than our initial expectation. All the registered partici-
pants received the training sets and detailed instructions for the algorithm
submission. By March 1, 2002 (the deadline for submission) we had
received a total of 33 algorithms from 29 participants (four participants
submitted two algorithms). The percentage of withdrawals after registra-
tion decreased from 56% in FVC2000 to 31% in FVC2002. The evaluations
of the 33 submitted algorithms were presented at the 16th ICPR Conference
and are now available online [30].

This chapter is organized as follows. Section 6.2 summarizes the
FVC2000 submission rules and Section 6.3 describes the four databases
used. In Section 6.4 we present the criteria and the procedures used for per-
formance evaluation. Section 6.5 reports the overall performance of the
participating algorithms on each database and concludes with a compar-
ison of the average results. Section 6.6 discusses the FVC2002 databases, the
test protocol and the main differences from FVC2000. Finally, in Section 6.7
we draw some concluding remarks and discuss how we intend to continue
supporting this initiative in the future.

6.2 FVC2000 Organization and Algorithms
Submission Rules

In FVC2000, the “universal” sensor was actually a collection of four dif-
ferent sensors/technologies to better cover the recent advances in finger-
print sensing techniques and to avoid favoring a particular algorithm
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through the choice of a specific sensor. In fact, of the four databases used in
the test, databases 1 and 2 were collected by using two small-size and low-
cost sensors (optical and capacitive, respectively). Database 3 was collected
by using a higher quality (large area) optical sensor. Images in database 4
were synthetically generated by using the approach described in [3]. Each
of the four databases contained 880 fingerprints from 110 different fingers,
collected using the “three bears rule” (not too easy, not too hard) [20],
based on our prior subjective experiences with fingerprint recognition
algorithms. In particular, on the one hand, we discarded fingerprint images
we considered completely intractable even for a human expert, while on the
other hand we avoided collecting perfect fingerprints which would be very
easy for a matching algorithm. Some internally developed algorithms
helped us in accomplishing this task. Each database was split into a seques-
tered “test” set of 800 images (set A) and an open “training” set of 80 images
(set B), made available to participants for algorithm tuning. The samples in
each set B were chosen to be as representative as possible of the variations
and difficulties in the corresponding set A. To this end, fingerprints were
automatically sorted by quality as in [15] and samples covering the whole
range of quality were included in set B. A final visual inspection of the
obtained data sets was carried out to ensure that “dry”, “wet”, “scratched”,
“distorted” and “markedly rotated” fingerprints were also adequately
represented.

In March 2000, after several months of active promotion, we had 25 vol-
unteering participants (about 50% from academia and 50% from industry),
and by the end of April 2000, the training sets were released to the
participants.

After the submission deadline (June 2000) for the executables, the
number of participants decreased to 11 (most of the initially registered
companies withdrew). Nonetheless, the number of participants (see Table
6.1) was more than we had anticipated, so we started working on the sub-
mitted executables to complete their evaluation by August 2000.

Once all the executables were submitted, feedback was sent to the partici-
pants by providing them the results of their algorithms on training set B
(the same data set they had previously been given) to allow them to verify
that neither run-time problems nor hardware-dependent misbehaviors
were occurring on our side.

Each participant was required to submit two executables in the form
of a “win32 console application”. According to the given specification,
the executables take input from command-line arguments and append
the output to a text file. The input includes a database-specific configura-
tion file. Participants were allowed to submit four distinct configuration
files – CF1.cfg, CF2.cfg, CF3.cfg and CF4.cfg (one for each database) –
in order to adjust the algorithm’s internal parameters according to each
specific database. Configuration files are text files or binary files and their
input is the responsibility of the participant’s code. Configuration files can
also contain pre-computed data to save time during enrollment and
matching.
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� The first executable (ENROLL_XXXX) enrolls a fingerprint image and pro-
duces a template file; the command-line syntax is:

ENROLL_XXXX imagefile templatefile configfile outputfile

where

XXXX is the participant id
imagefile is the input TIF image pathname
templatefile is the output template pathname
configfile is the configuration file pathname
outputfile is the output text file where a log string (of the form

imagefile templatefile result) must be appended;
result is “OK” if the enrollment can be performed or
“FAIL” if the input image cannot be processed by the
algorithm.

� The second executable (MATCH_XXXX) matches a fingerprint image
against a fingerprint template and produces a similarity score; the com-
mand-line syntax is:

MATCH_XXXX imagefile templatefile configfile outputfile

where:

XXXX is the participant id
imagefile is the input TIF image pathname
templatefile is the input template pathname
configfile is the configuration file pathname
outputfile is the output text file where a log string (of the form

imagefile templatefile result similarity) must
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ID Organization Type

CETP CEFET-PR / Antheus Technologia Ltda (Brasil) Academic

CSPN Centre for Signal Processing, Nanyang Technological
University (Singapore)

Academic

CWAI Centre for Wavelets, Approximation and Information
Processing, Department of Mathematics, National
University of Singapore (Singapore)

Academic

DITI Ditto Information & Technology Inc. (Korea) Commercial

FPIN FingerPin AG (Switzerland) Commercial

KRDL Kent Ridge Digital Labs (Singapore) Academic

NCMI Natural Sciences and Mathematics, Institute of
Informatics (Macedonia)

Academic

SAG1 SAGEM SA (France) Commercial

SAG2 SAGEM SA (France) Commercial

UINH Inha University (Korea) Academic

UTWE University of Twente, Electical Engineering (Netherlands) Academic

Table 6.1 List of participants: a four digit ID was assigned to each algorithm. (Sagem SA sub-
mitted two different algorithms.)



be appended; result is “OK” if the matching can be per-
formed or “FAIL” if the matching cannot be executed by
the algorithm; similarity is a floating-point value
ranging from 0 to 1 which indicates the similarity
between the template and the fingerprint: 0 means no
similarity, 1 maximum similarity.

Two C-language skeletons for ENROLL_XXXX and MATCH_XXXX were made
available online to reduce the participants’ implementation efforts. These
source files perform all the necessary I/O (including TIF image loading).

We also premised that, for practical testing reasons, we should limit the
maximum response time of the algorithms: 15 seconds for each enrollment,
5 seconds for each matching. The test was executed on machines with
Pentium III processors running at 450 MHz (under Windows NT 4.0 and
Linux RedHat 6.1).

6.3 Databases

Four different databases (hereinafter referred to as DB1, DB2, DB3 and
DB4) were collected by using the following sensors/technologies [11] (Fig.
6.1):

� DB1: optical sensor “Secure Desktop Scanner” by KeyTronic
� DB2: capacitive sensor “TouchChip” by ST Microelectronics
� DB3: optical sensor “DFR-90" by Identicator Technology
� DB4: synthetically generated based on the method SFinGe proposed in

[3].

Each database is 110 fingers wide (w) and 8 impressions per finger deep
(d) (880 fingerprints in all); fingers numbered from 101 to 110 (set B) were
made available to the participants to allow parameter tuning before the
submission of the algorithms; the benchmark is then constituted by fingers
numbered from 1 to 100 (set A). For a system evaluation, the size of the
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Figure 6.1 Fingerprint database generation. From left to right: the three sensors used for col-
lecting DB1, DB2, DB3, respectively, and a snapshot of the tool which generated synthetic finger-
prints in DB4.



above four databases is certainly not sufficient to estimate the performance
with high confidence. However, in a technology evaluation (like FVC2000)
the aim is to capture the variability and the difficulties of the problem at
hand and to investigate how the different algorithms deal with them. For
this purpose, the sizes of our database are adequate.

Table 6.2 summarizes the global features of the four databases, and
Figure 6.2 shows a sample image from each of them.

It is worth emphasizing that the protocol of providing more than one
database is not aimed at comparing different acquisition technologies and
devices. The results obtained by the algorithms on the different databases
cannot be conceived as a quality measure of the corresponding sensors,
since the acquisition conditions and the volunteer crew of each database
are different.

To summarize, DB1 and DB2 have the following features:

� The fingerprints are mainly from 20 to 30 year-old students (about 50%
male).

� Up to four fingers were collected for each volunteer (forefinger and
middle finger of both the hands).

� The images were taken from untrained people in two different sessions
and no efforts were made to ensure minimum acquisition quality.
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Sensor type Image size Set A (w × d) Set B (w × d) Resolution

DB1 Optical sensor 300 × 300 100 × 8 10 × 8 500 dpi

DB2 Capacitive
sensor

256 × 364 100 × 8 10 × 8 500 dpi

DB3 Optical sensor 448 × 478 100 × 8 10 × 8 500 dpi

DB4 SFinGe v 2.1 240 × 320 100 × 8 10 × 8 About 500 dpi1

1In the artificial generation, the resolution is controlled by the average ridge-line inter-
distance; this input was estimated from a real 500 dpi fingerprint database.

Table 6.2 The four FVC2000 databases.

DB1 DB2 DB3 DB4

Figure 6.2 Sample images taken from DB1, DB2, DB3 and DB4. In order to show the different
image sizes of each database, the four images are displayed at the same scale factor.



� All the images from the same individual were acquired by interleaving
the acquisition of the different fingers (e.g. first sample of left forefinger,
first sample of right forefinger, first sample of left middle, first sample of
right middle, second sample of the left forefinger, ...).

� The presence of the fingerprint cores and deltas is not guaranteed, since
no attention was paid to checking the correct finger position on the
sensor.

� The sensor platens were not systematically cleaned (as usually suggested
by the vendors).

� The acquired fingerprints were manually analyzed to ensure that the
maximum rotation is approximately in the range [–15°, 15°] and that
each pair of impressions of the same finger has a non-null overlapping
area.

Figures 6.3–6.6 show some images from DB1 and DB2.
The database DB3 was collected as follows:

� The fingerprints are from 19 volunteers between the ages of 5 and 73
(55% male).

� One-third of the volunteers were over 55 years of age.
� One-third of the volunteers were under 18 years of age.
� One-sixth of the volunteers were under 7 years of age (children’s finger-

prints constitute an interesting case study, since the usable image area is
small and the ridge-line density is high).

� Two images of up to six fingers (thumb, fore and middle on left and right
hands) were taken without interleaving from each volunteer at each ses-
sion and no efforts were made to ensure a minimum acquisition quality.

� Each volunteer was seen at four sessions, with no more than two sessions
on any single day.

� The time gap between the first and last sessions was at least three days
and as long as 3 months, depending upon volunteer.
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Figure 6.3 Sample images from DB1; each row shows different impressions of the same finger.
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Figure 6.4 Images from DB1; all the samples are from different fingers and are roughly ordered
by quality (top left: high quality; bottom right: low quality).

Figure 6.5 Sample images from DB2; each row shows different impressions of the same finger.



� The sensor plate was systematically cleaned between image acquisitions.
� At one session with each volunteer, fingers were cleaned with rubbing

alcohol and dried.
� Some part of the core was apparent in each image, but care was taken to

avoid a complete overlap between consecutive images taken during a
single session.

� The acquired fingerprints were manually analyzed to ensure that the
maximum rotation is approximately in the range [–15°, 15°] and that
each pair of impressions of the same finger has a non-null overlapping
area.

Figures 6.7 and 6.8 show some sample images taken from DB3.
Collection of DB4 requires some explanation. In general, the use of artifi-

cial images for testing biometric systems is not considered to be the “best
practice” [20]. Although this may be the case for performance evaluation in
real applications, we believe that in a technology evaluation event such as
FVC2000, the use of synthetic images has three main advantages:
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Figure 6.6 Images from DB2; all the samples are from different fingers and are roughly ordered
by quality (top left: high quality; bottom right: low quality).
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Figure 6.7 Sample images from DB3; each row shows different impressions of the same finger.

Figure 6.8 Images from DB3; all the samples are from different fingers and are roughly ordered
by quality (top left: high quality; bottom right: low quality).



� It supplies images which are native to none of the participant algorithms,
thus providing a fair comparison.

� Synthetic fingerprint databases can be created at very low cost.
Acquiring a large number of fingerprints for testing purposes may be
problematic due to the great amount of time and resources required and
also to the privacy legislation which in some countries prohibits the dif-
fusion of such personal information. Furthermore, once a database has
been “used”, its utility is limited since, for successive testing of algo-
rithms, a new unknown database should be used.

� It is possible to adjust the database difficulty by tuning different kinds of
perturbations (e.g. maximum amount of rotation and translation, and
the amount of skin distortion).

If the generated artificial images were not a suitable simulation of real
fingerprint patterns, the comparisons on the synthetic database would be
misleading; furthermore, in order to improve the performance, ad hoc
algorithms could be designed/tuned according to the same assumptions
that model the synthetic generation. However, the presence of three real
databases in FVC2000 provides a natural way to check the validity of the
results on DB4.

The parameters of the synthetic generator were tuned to emulate a low-
cost sensor with a small acquisition area; the maximum rotation and dis-
placement and skin distortion are adjusted to roughly reproduce the per-
turbations in the three previous databases. Figures 6.9 and 6.10 show some
sample images taken from DB4.

148 Biometric Systems

Figure 6.9 Sample images from DB4; each row shows different impressions of the same finger.



6.4 Performance Evaluation

For each database, we will refer to the jth fingerprint image of the ith finger
as Fij, i = 1..100, j = 1..8 and to the corresponding template (computed from
Fij) as Tij.

For each database and for each algorithm:

� The templates Tij, i = 1..100, j = 1..7 are computed from the corre-
sponding Fij and stored on a disk; one of the following three kinds of
rejection can happen for each image Fij:

1. F (Fail): the algorithm declares that it cannot enroll the fingerprint
image.

2. T (Timeout): the enrollment exceeds the maximum allowed time (15
seconds).

3. C (Crash): the algorithm crashes during fingerprint processing.

The three types of rejection, considered as “failure to enroll”, are
added and stored in REJENROLL.
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Figure 6.10 Images from DB4; all the samples are from different fingers and are roughly ordered
by quality (top left: high quality; bottom right: low quality).



� Each fingerprint template Tij is matched against the fingerprint images
Fik (j< k ≤ 8) and the corresponding Genuine Matching Scores gmsijk are
stored1. The number of matches (denoted as NGRA – Number of Gen-
uine Recognition Attempts) is ((8 × 7)/2) × 100 = 2,800 in case REJENROLL
= 0. The failed, timeout (5 seconds) and crash rejections are accumulated
into REJNGRA; no gmsijk is stored in this case.

� Each fingerprint template Ti1, i = 1..100 is matched against the first fin-
gerprint image from different fingers Fk1 (i < k ≤ 100) and the corre-
sponding Impostor Matching Scores imsik are stored. The number of
matches (denoted as NIRA – Number of Impostor Recognition
Attempts) is ((100 × 99)/2) = 4, 950 in case REJENROLL = 0. The failed,
timeout (5 seconds) and crash rejections are accumulated into REJNIRA;
no imsik is stored in this case.

� The genuine score distribution and the impostor score distribution are
computed (actually, the term “distribution” denotes a histogram) and
graphically reported to show how the algorithm “separates” the two
classes. In fingerprint verification, higher scores are associated with
more closely matching images.

� The FMR(t) (False Match Rate) and FNMR(t) (False Non-Match Rate)
curves are computed from the above distributions for t ranging from 0 to
102. Given a threshold t, FMR(t) denotes the percentage of imsik ≥ t, and
FNMR(t) denotes the percentage of gmsijk < t. Actually, since FMR and
FNMR are used in the contest to compare the performance of different
algorithms, FMR and FNMR are “corrected” to keep into account rejec-
tions stored in REJNIRA and REJNGRA:

FMR
ims ims

NIRA

FNMR
gms

( )
{ | }

,

( )
{

t
card t

t
card

ik ik

ijk

=
≥

=
| }gms REJ

NGRA

NGRAijk t< +

where card denotes the cardinality of a given set. This correction
assumes that a failure to match is always treated by the system as a “non-
match” (matching score < 0).
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1 If g is matched with h, the symmetric match (i.e. h against g) is not executed.

2 FMR and FNMR are often confused with FAR (False Acceptance Rate) and FRR
(False Rejection Rate) respectively, but the FAR/FRR notation is misleading in
some applications. For example, in a welfare benefits system, which uses fingerprint
identification to prevent multiple payments under false identity, the system “falsely
accepts” an applicant if the fingerprint is “falsely rejected” (not matched to the print
of the same finger previously stored in the database); similarly, a “false acceptance”
causes a “false rejection”. Therefore, to avoid this confusion, we distinguish the
matching errors made by the algorithm from errors made in the final “accept/
reject” decision given the user.



� A ROC (Receiving Operating Curve) is obtained, where FNMR is plotted
as a function of FMR; the curve is drawn in log–log scales for better
comprehension.

� The Equal Error Rate EER is computed as the point where FNMR(t) =
FMR(t) (see Figure 6.11); in practice, the matching score distributions
(histograms) are not continuous and a crossover point might not exist. In
this case, we report the interval [EERlow, EERhigh]. An operational defini-
tion of EER is given in Appendix A.

� ZeroFMR is defined as the lowest FNMR at which no False Matches occur
and ZeroFNMR is defined as the lowest FMR at which no False Non-
Matches occur (Figure 6.11):

ZeroFMR FNMR FMR

ZeroFNMR

( ) min{ ( )| ( ) }

( ) min{

t t t

t
t

t

= =

=

0

FMR FNMR( )| ( ) }t t = 0

Both ZeroFMR and ZeroFNMR may not exist; in such a case we assign to
them the value 1.

� The average enroll time is calculated as the average CPU time for a single
enrollment operation, and average match time as the average CPU time
for a single match operation between a template and a test image.

6.5 Results

This section reports the performance of the tested algorithms on each of
the four databases (Tables 6.3–6.6) and the average results over the four
databases (Table 6.7). Figure 6.12 shows the ROC for DB3, which proved to
be the most difficult data set. The notation introduced in Section 6.4 is used
in both the graphics and tables, with the only exception of reporting
REJENROLL as a percentage value and to collapse both REJNGRA and REJNIRA
into a single value REJMATCH:
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Figure 6.11 An example of FMR/FNMR curves, where the points corresponding to EER, ZeroFMR
and ZeroFNMR are highlighted.



REJ
NIRA REJ NGRA REJ

NIRA NGRAMATCH
NIRA NGRA=

⋅ + ⋅
+

For a correct interpretation of the results, EER alone is not a sufficient
metric; REJENROLL should be also taken into account.

For each algorithm, detailed results (including genuine and impostor
distributions, FMR and FNMR curves, NGRA, NIRA, ...) are reported in
[14]. For each algorithm, detailed results (including genuine and impostor
distributions, FMR and FNMR curves, NGRA, NIRA, ...) are reported in
Appendix B.

Most of the algorithms submitted to the competition performed well, if
we take into account the difficulty of adapting a given algorithm to new
types of images. In particular, algorithms SAG1 and SAG2 showed the best
accuracy and CSPN exhibited a good trade-off between accuracy and
efficiency.
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Algorithm EER (%) REJENROLL
(%)

REJMATCH
(%)

Average enroll
time (s)

Average match
time (s)

SAG1 0.67 0.00 0.00 2.48 0.96

SAG2 1.17 0.00 0.00 0.88 0.88

CETP 5.06 0.00 0.00 0.81 0.89

CWAI 7.06 3.71 3.90 0.22 0.32

CSPN 7.60 0.00 0.00 0.17 0.17

UTWE 7.98 0.00 0.00 10.40 2.10

KRDL 10.66 6.43 6.59 1.00 1.06

FPIN 13.46 0.00 0.00 0.83 0.87

UINH 21.02 1.71 5.08 0.53 0.56

DITI 23.63 0.00 0.00 0.65 0.72

NCMI 49.11 0.00 0.12 1.13 1.34

Table 6.3 Algorithm performance over DB1 sorted by EER.

Algorithm EER (%) REJENROLL
(%)

REJMATCH
(%)

Average enroll
time (s)

Average match
time (s)

SAG1 0.61 0.00 0.00 2.63 1.03

SAG2 0.82 0.00 0.00 0.93 0.93

CSPN 2.75 0.00 0.00 0.17 0.17

CWAI 3.01 1.29 1.29 0.23 0.30

CETP 4.63 0.00 0.09 0.85 0.98

KRDL 8.83 3.29 4.41 1.16 2.88

UTWE 10.65 0.00 0.00 10.42 2.12

FPIN 11.14 0.00 0.00 1.16 1.24

DITI 13.83 0.00 0.00 1.21 1.28

UINH 15.22 0.86 4.08 0.60 0.65

NCMI 46.15 0.00 0.00 1.28 1.57

Table 6.4 Algorithm performance over DB2 sorted by EER.



Table 6.7 highlights a significant gap in the performance of the different
algorithms and it would be extremely interesting to understand the reasons
for such differences. For this purpose, after the presentation of the results,
we asked the participants to provide some technical details about their
methods, but only a few of them responded (the responses can be found at
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Figure 6.12 ROC curves on DB3.Each point denotes a pair (FMR(t),FNMR(t)) for a given value of t.

Algorithm EER (%) REJENROLL
(%)

REJMATCH
(%)

Average enroll
time (s)

Average match
time (s)

SAG1 3.64 0.00 0.00 5.70 2.13

SAG2 4.01 0.00 0.00 1.94 1.94

CSPN 5.36 0.57 1.24 0.35 0.36

CETP 8.29 0.00 0.00 1.49 1.66

CWAI 11.94 12.86 8.00 0.46 0.57

KRDL 12.20 6.86 5.12 1.48 1.60

UINH 16.32 10.29 7.64 1.28 1.36

UTWE 17.73 0.00 0.00 10.44 2.31

DITI 22.63 0.00 0.00 2.59 2.67

FPIN 23.18 0.00 0.00 2.13 2.19

NCMI 47.43 0.00 0.01 2.25 2.75

Table 6.5 Algorithm performance over DB3 sorted by EER.



the FVC2000 web site [7]). In any case, on the basis of the participant
responses and on what we learned from this experience, we can make the
following observations:

� A coarse analysis of the errors on genuine attempts showed that most of
the errors were made by the algorithms on about 15–20% poor-quality
fingerprints in each database. In other words, we could claim that a
“20–80 rule” is valid: that is, 20% of the database is responsible for 80% of
the errors.

� The most accurate algorithm (SAG1) takes a lot of time for enrollment
(3.18 s with respect to a median enrollment time of 1.08 s). This suggests
that accurate image enhancement and feature extraction are really
important for improving the matching accuracy. Furthermore, feature
extraction seems to perform asymmetrically, since the average matching
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Algorithm EER (%) REJENROLL
(%)

REJMATCH
(%)

Average enroll
time (s)

Average match
time (s)

SAG1 1.99 0.00 0.00 1.90 0.77

SAG2 3.11 0.00 0.00 0.69 0.69

CSPN 5.04 0.00 0.00 0.11 0.11

CWAI 6.30 0.00 0.00 0.16 0.20

CETP 7.29 0.00 0.00 0.65 0.72

KRDL 12.08 10.86 10.24 0.70 0.79

FPIN 16.00 0.00 0.00 0.77 0.80

DITI 23.80 0.00 0.00 0.52 0.60

UTWE 24.59 0.00 0.00 10.42 4.17

UINH 24.77 2.14 4.28 0.42 0.45

NCMI 48.67 0.00 0.25 1.08 1.19

Table 6.6 Algorithm performance over DB4 sorted by EER.

Algorithm Average
EER (%)

Average
REJENROLL
(%)

Average
REJMATCH
(%)

Average enroll
time (s)

Average match
time (s)

SAG1 1.73 0.00 0.00 3.18 1.22

SAG2 2.28 0.00 0.00 1.11 1.11

CSPN 5.19 0.14 0.31 0.20 0.20

CETP 6.32 0.00 0.02 0.95 1.06

CWAI 7.08 4.46 3.14 0.27 0.35

KRDL 10.94 6.86 6.52 1.08 1.58

UTWE 15.24 0.00 0.00 10.42 2.67

FPIN 15.94 0.00 0.00 1.22 1.27

UINH 19.33 3.75 5.23 0.71 0.76

DITI 20.97 0.00 0.00 1.24 1.32

NCMI 47.84 0.00 0.09 1.44 1.71

Table 6.7 Average performance over the four databases sorted by average EER.



time (which also includes the feature extraction time for the test image)
is substantially lower than a single enrollment time.

� The fastest algorithm (Cspn) extracts minutiae by an adaptive tracing of
the gray-level ridges, without a priori binarization and thinning (which
are time-consuming tasks) [15, 26] and exploits local minutiae arrange-
ment to speed up the initial steps of minutiae matching [27].

Databases DB1 and DB2 proved to be “easier” than DB3, even though the
sensor used for DB3 is of higher quality. This means that the acquisition
conditions and the volunteer population can have a stronger impact on
performance than sensor quality.

The synthetically generated database (DB4) was demonstrated to be ade-
quate for FVC2000 purposes: in particular, from Tables 6.3–6.6, it is evident
that the algorithm ranking on DB4 is quite similar to the other databases,
proving that no algorithm was favored or penalized by the synthetic
images. In particular, if an algorithm performs well on real fingerprints,
then it also performs well on synthetic fingerprints, and vice versa. The
visual analysis of impostor and genuine distributions (see [14]) definitely
supports this claim, since no significant differences are seen between the
DB4 graphics and the others.

6.6 Organization of FVC2002

At the end of 2001, when the FVC2002 web site was created [30], we exten-
sively publicized this next competition. To increase the number of compa-
nies participating, and therefore to provide a more complete panorama of
the state of the art, we decided to allow the participants to remain anony-
mous. In FVC2002, participants could decide not to publish the name of
their organization in case their results were not as they expected.

The FVC2002 announcement clearly stated that, analogously to FVC2000,
FVC2002 is not to be viewed as an official certification of fingerprint-based
biometric systems, but simply as a technology evaluation [30], where algo-
rithms compliant with a predefined protocol are evaluated on common
databases. Neither hardware components nor proprietary modules outside
the FVC2002 protocol are tested.

Four new databases were collected and a representative subset of each
database was made available to the participants to let them tune their algo-
rithms according to the image size and the variability of the fingerprints in
the databases. Four databases constituted the FVC2002 benchmark. Three
different scanners and the SFinGe synthetic generator were used to collect
fingerprints (see Table 6.8 and Figure 6.13). Figure 6.14 shows an image for
each database, at the same scale factor.

At the end of the data collection, we had collected for each database a
total of 120 fingers and 12 impressions per finger (1440 impressions) using
30 volunteers. The size of each database used in the FVC2002 test, however,
was established as 110 fingers, 8 impressions per finger (880 impressions)
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(Figure 6.15). Collecting some additional data gave us a margin in case of
collection errors, and also allowed us to choose systematically from the col-
lected impressions those to include in the test databases. In the FVC2002
testing protocol, new performance indicators, e.g. FMR100 and FMR1000,
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Technology Scanner Image size – resolution

DB1 Optical Identix TouchView II 388 × 374 – 500 dpi

DB2 Optical Biometrika FX2000 296 × 560 – 569 dpi

DB3 Capacitive Precise Biometrics 100 SC 300 × 300 – 500 dpi

DB4 Synthetic SFinGE v2.51 288 × 384 – 500 dpi

Table 6.8 Scanners/technologies used for the collection of FVC2002 databases.

Figure 6.13 From left to right: the three sensors used for collecting DB1, DB2 and DB3, respec-
tively, and a snapshot of the tool which generated synthetic fingerprints in DB4.

DB1 DB2

DB3DB4

Figure 6.14 One fingerprint image from each database of FVC2002.



which are the values of FNMR for FMR = 1/100 and 1/1000 respectively,
were added to those already used in FVC2000. These data are useful to char-
acterize the accuracy of fingerprint-based systems, which are often oper-
ated far from the EER point, by using thresholds which reduce FMR at the
cost of high FNMR. Failure to enroll errors (FTE) were incorporated into
the computation of the false non-match rate (FNMR) and false match rate
(FMR) to make the results of the different algorithms directly comparable.
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Figure 6.15 Sample images from the four databases; for each database, the first row shows eight
impressions of the same finger, the second row reports samples from different fingers, roughly
ordered by quality (left: high quality; right: low quality).



In particular, we clarified from the beginning that each FTE error produces
a “ghost” template which does not match (matching score 0) with the
remaining fingerprints, thus increasing the FNMR. This approach is
consistent with that used in [32].

Ranking the algorithms according to EER (as in FVC2000) may be some-
times misleading. On the other hand, mixing heterogeneous indicators into
a unique goodness index is difficult and arbitrary. Therefore, we decided to
summarize the results of FVC2002 in a sort of Olympic medal table where
three medals (gold, silver and bronze) are assigned to the best three algo-
rithms for each indicator over each database.

The evaluation of the 33 algorithms submitted to the Second Interna-
tional Fingerprint Verification Competition (FVC2002) is available at [30].
A CD-ROM containing the four databases is available to the research com-
munity. At the time of this writing, a 2004 version of FVC is being planned,
again to have four separate databases: two of these databases will be col-
lected using an optical scanner, one using a thermal swept scanner, and one
again synthetically generated. Results will again be posted online [33].

6.7 Conclusions

Once again we would like to remark that the results reported here do not
necessarily reflect the performance that the participating algorithms
would achieve in a real environment or when embedded into a complete
biometric system. In any event, we believe that FVC competition results:

� Provide a useful overview of the state of the art in this field.
� Allow researchers and companies to test their algorithms over common

databases collected using state of the art sensors.
� Provide guidance to the participants for improving their algorithms.

In future, we intend to continue supporting this initiative as follows:

� The existing FVC web sites will be maintained to diffuse FVC results, and
to promote FVC testing protocol as a standard for technological
evaluations.

� Companies and academic research groups will be allowed to test new
algorithms or improved versions of existing algorithms on the FVC
benchmark databases and to add their results to the FVC web site. New
entries will be kept isolated from the original entries, since hereafter the
full databases are known in advance, which could allow algorithm tuning
to give an unfair advantage to new participants.

� Generating synthetic fingerprint databases for future evaluations will be
further investigated.
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Appendix A

An operational procedure for computing EER (interval), given a finite
number of genuine and impostor matching scores, is reported in the fol-
lowing. Let

t t t t
t ijk ik

1 = ≤
∈ ∪

max { | ( ) ( )}
{ } { }gms ims

FNMR FMR

and

t t t t
t ijk ik

2 = ≥
∈ ∪

min { | ( ) ( )}
{ } { }gms ims

FNMR FMR

The EER interval is defined as:

[ , ]

[ ( ), ( )] ( ) (

EER EER

FNMR FMR if FNMR FMR

low high =

+t t t1 1 1 t t t

t t
1 2 2

2 2

) ( ) ( )

[ ( ), ( )]

≤ +⎧
⎨
⎩

FMR FNMR

FMR FNMR otherwise

and EER is estimated as (EERlow + EERhigh) /2 (see Figure 6.16).

Appendix B

The following pages show the results for each algorithm.
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Estimated
EER

FMR(t1)

FNMR(t1)

t1 t2

FMR(t1)

FNMR(t1)

t1 t2
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EER

EER

t

FMR(t2)

Figure 6.16 Computing the EER interval.At the top an example is given where an EER point exists.
Below, two cases are shown where an EER point does not exist and the corresponding intervals are
highlighted.



160 Biometric Systems

A
lg

o
ri

th
m

C
ET

P
o

n
d

at
a

b
a

se
D

B
1

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
81

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

89
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

5
.0

6
%

(4
.3

0
%

–
5

.8
2

%
)

5
.0

6
%

(4
.3

0
%

–
5

.8
2

%
)

1
8

.8
6

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 161

A
lg

o
ri

th
m

C
ET

P
o

n
d

at
a

b
a

se
D

B
2

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
85

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

98
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.2
5

%
(F

:0
T

:0
C

:7
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

4
.6

3
%

(3
.5

8
%

–
5

.6
8

%
)

4
.5

1
%

(3
.5

8
%

–
5

.4
4

%
)

1
1

.7
1

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



162 Biometric Systems

A
lg

o
ri

th
m

C
ET

P
o

n
d

at
a

b
a

se
D

B
3

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

1.
49

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
1.

66
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

8
.2

9
%

(6
.5

5
%

–
1

0
.0

4
%

)
8

.2
9

%
(6

.5
5

%
–

1
0

.0
4

%
)

2
2

.6
1

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 163

A
lg

o
ri

th
m

C
ET

P
o

n
d

at
a

b
a

se
D

B
4

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
65

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

72
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

7
.2

9
%

(7
.0

1
%

–
7

.5
7

%
)

7
.2

9
%

(7
.0

1
%

–
7

.5
7

%
)

2
9

.7
5

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



164 Biometric Systems

A
lg

o
ri

th
m

C
SP

N
o

n
d

at
a

b
a

se
D

B
1

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
17

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

17
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

7
.6

0
%

(7
.6

0
%

–
7

.6
1

%
)

7
.6

0
%

(7
.6

0
%

–
7

.6
1

%
)

2
2

.4
6

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 165

A
lg

o
ri

th
m

C
SP

N
o

n
d

at
a

b
a

se
D

B
2

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
17

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

17
se

co
n

ds

R
E

JE
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
JN

G
R

A
R

E
JN

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

2
.7

5
%

2
.7

5
%

1
0

.2
9

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



166 Biometric Systems

A
lg

o
ri

th
m

C
SP

N
o

n
d

at
a

b
a

se
D

B
3

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
35

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

36
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.5

7
%

(F
:0

T
:0

C
:4

)
2

7
7

7
4

9
4

5
0

.0
7

%
(F

:0
T

:0
C

:2
)

1
.9

0
%

(F
:0

T
:0

C
:9

4
)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

5
.3

6
%

5
.3

3
%

(5
.3

2
%

–
5

.3
3

%
)

2
1

.0
7

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 167

A
lg

o
ri

th
m

C
SP

N
o

n
d

at
a

b
a

se
D

B
4

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
11

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

11
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

5
.0

4
%

(5
.0

4
%

–
5

.0
5

%
)

5
.0

4
%

(5
.0

4
%

–
5

.0
5

%
)

1
5

.5
4

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



168 Biometric Systems

A
lg

o
ri

th
m

C
W

A
I

o
n

d
at

a
b

a
se

D
B

1
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
22

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

32
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

3
.7

1
%

(F
:2

6
T

:0
C

:0
)

2
7

1
7

4
9

4
4

3
.9

7
%

(F
:1

0
8

T
:0

C
:0

)
3

.8
6

%
(F

:1
9

1
T

:0
C

:0
)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

7
.0

6
%

(6
.6

1
%

–
7

.5
1

%
)

4
.2

7
%

(4
.1

0
%

–
4

.4
5

%
)

2
3

.1
5

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 169

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e

A
lg

o
ri

th
m

C
W

A
I

o
n

d
at

a
b

a
se

D
B

2
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
23

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

30
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

1
.2

9
%

(F
:9

T
:0

C
:0

)
2

7
6

8
4

9
1

6
1

.2
3

%
(F

:3
4

T
:0

C
:0

)
1

.3
2

%
(F

:6
5

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

3
.0

1
%

(2
.6

6
%

–
3

.3
6

%
)

2
.1

6
%

(2
.0

2
%

–
2

.3
0

%
)

8
.7

4
%

1
0

0
.0

0
%



170 Biometric Systems

A
lg

o
ri

th
m

C
W

A
I

o
n

d
at

a
b

a
se

D
B

3
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
46

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

57
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

1
2

.8
6

%
(F

:9
0

T
:0

C
:0

)
2

4
7

5
4

2
5

2
8

.1
6

%
(F

:2
0

2
T

:0
C

:0
)

7
.9

0
%

(F
:3

3
6

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

1
1

.9
4

%
(1

0
.8

7
%

–
1

3
.0

1
%

)
5

.9
0

%
(5

.0
3

%
–

6
.7

8
%

)
2

3
.4

3
%

1
0

0
.0

0
%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 171

A
lg

o
ri

th
m

C
W

A
I

o
n

d
at

a
b

a
se

D
B

4
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
16

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

20
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

6
.3

0
%

(5
.7

4
%

–
6

.8
6

%
)

6
.3

0
%

(5
.7

4
%

–
6

.8
6

%
)

4
2

.1
8

%
7

8
.3

4
%

0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R

R
O

C
cu

rv
e



172 Biometric Systems

A
lg

o
ri

th
m

D
IT

I
o

n
d

at
a

b
a

se
D

B
1

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
65

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

72
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

2
3

.6
3

%
(2

3
.6

2
%

–
2

3
.6

4
%

)
2

3
.6

3
%

(2
3

.6
2

%
–

2
3

.6
4

%
)

5
0

.5
4

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 173

A
lg

o
ri

th
m

D
IT

I
o

n
d

at
a

b
a

se
D

B
2

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

1.
21

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
1.

28
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

1
3

.8
3

%
(1

3
.8

0
%

–
1

3
.8

6
%

)
1

3
.8

3
%

(1
3

.8
0

%
–

1
3

.8
6

%
)

3
7

.4
3

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



174 Biometric Systems

A
lg

o
ri

th
m

D
IT

I
o

n
d

at
a

b
a

se
D

B
3

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

2.
59

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
2.

67
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

2
2

.6
3

%
(2

2
.6

1
%

–
2

2
.6

5
%

)
2

2
.6

3
%

(2
2

.6
1

%
–

2
2

.6
5

%
)

6
5

.5
4

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 175

A
lg

o
ri

th
m

D
IT

I
o

n
d

at
a

b
a

se
D

B
4

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
52

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

60
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

2
3

.8
0

%
(2

3
.7

4
%

–
2

3
.8

6
%

)
2

3
.8

0
%

(2
3

.7
4

%
–

2
3

.8
6

%
)

7
5

.3
6

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



176 Biometric Systems

A
lg

o
ri

th
m

FP
IN

o
n

d
at

a
b

a
se

D
B

1
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
83

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

87
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

1
3

.4
6

%
1

3
.4

6
%

9
6

.0
7

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 177

A
lg

o
ri

th
m

FP
IN

o
n

d
at

a
b

a
se

D
B

2
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

1.
16

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
1.

24
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

1
1

.1
4

%
(1

1
.1

3
%

–
1

1
.1

4
%

)
1

1
.1

4
%

(1
1

.1
3

%
–

1
1

.1
4

%
)

9
5

.6
1

%
9

9
.4

5
%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



178 Biometric Systems

A
lg

o
ri

th
m

FP
IN

o
n

d
at

a
b

a
se

D
B

3
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

2.
13

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
2.

19
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

2
3

.1
8

%
2

3
.1

8
%

9
8

.6
1

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 179

A
lg

o
ri

th
m

FP
IN

o
n

d
at

a
b

a
se

D
B

4
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
77

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

80
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

1
6

.0
0

%
1

6
.0

0
%

9
7

.8
9

%
8

0
.0

2
%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



180 Biometric Systems

A
lg

o
ri

th
m

K
R

D
L

o
n

d
at

a
b

a
se

D
B

1
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

1.
00

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
1.

06
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

6
.4

3
%

(F
:4

3
T

:2
C

:0
)

2
6

4
4

4
8

4
1

4
.4

3
%

(F
:1

1
3

T
:4

C
:0

)
7

.7
7

%
(F

:3
7

6
T

:0
C

:0
)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

1
0

.6
6

%
7

.3
5

%
(7

.3
5

%
–

7
.3

6
%

)
2

4
.5

1
%

1
0

0
.0

0
%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 181

A
lg

o
ri

th
m

K
R

D
L

o
n

d
at

a
b

a
se

D
B

2
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

1.
16

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
2.

88
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

3
.2

9
%

(F
:2

2
T

:1
C

:0
)

2
7

0
2

4
9

4
2

1
.8

5
%

(F
:4

6
T

:4
C

:0
)

5
.8

1
%

(F
:2

8
6

T
:1

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

8
.8

3
%

(8
.8

2
%

–
8

.8
5

%
)

7
.5

3
%

(7
.5

2
%

–
7

.5
4

%
)

2
2

.1
3

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



182 Biometric Systems

A
lg

o
ri

th
m

K
R

D
L

o
n

d
at

a
b

a
se

D
B

3
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

1.
48

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
1.

60
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

6
.8

6
%

(F
:4

8
T

:0
C

:0
)

2
6

3
7

4
6

9
1

5
.6

5
%

(F
:1

4
9

T
:0

C
:0

)
4

.8
2

%
(F

:2
2

6
T

:0
C

:0
)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

1
2

.2
0

%
(1

2
.1

9
%

–
1

2
.2

1
%

)
8

.0
3

%
(7

.9
7

%
–

8
.0

8
%

)
2

2
.8

3
%

1
0

0
.0

0
%

0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 183

A
lg

o
ri

th
m

K
R

D
L

o
n

d
at

a
b

a
se

D
B

4
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
70

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

79
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

1
0

.8
6

%
(F

:7
6

T
:0

C
:0

)
2

4
8

8
4

4
7

7
6

.1
1

%
(F

:1
5

2
T

:0
C

:0
)

1
2

.5
3

%
(F

:5
6

1
T

:0
C

:0
)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

1
2

.0
8

%
(1

2
.0

6
%

–
1

2
.1

0
%

)
7

.4
6

%
(7

.4
3

%
–

7
.4

9
%

)
4

0
.1

9
%

1
0

0
.0

0
%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



184 Biometric Systems

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e

A
lg

o
ri

th
m

N
C

M
I

o
n

d
at

a
b

a
se

D
B

1
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

1.
13

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
1.

34
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.1

8
%

(F
:9

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

4
9

.1
1

%
(4

8
.8

2
%

–
4

9
.3

9
%

)
4

9
.1

5
%

(4
8

.8
2

%
–

4
9

.4
8

%
)

1
0

0
.0

0
%

9
9

.8
2

%



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 185

A
lg

o
ri

th
m

N
C

M
I

o
n

d
at

a
b

a
se

D
B

2
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

1.
28

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
1.

57
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

4
6

.1
5

%
(4

5
.8

2
%

–
4

6
.4

8
%

)
4

6
.1

5
%

(4
5

.8
2

%
–

4
6

.4
8

%
)

1
0

0
.0

0
%

1
0

0
.0

0
%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



186 Biometric Systems

A
lg

o
ri

th
m

N
C

M
I

o
n

d
at

a
b

a
se

D
B

3
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

2.
25

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
2.

75
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

2
%

(F
:1

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

4
7

.4
3

%
(4

5
.7

6
%

–
4

9
.1

1
%

)
4

7
.4

4
%

(4
5

.7
7

%
–

4
9

.1
1

%
)

1
0

0
.0

0
%

9
9

.9
8

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 187

A
lg

o
ri

th
m

N
C

M
I

o
n

d
at

a
b

a
se

D
B

4
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

1.
08

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
1.

19
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.1
8

%
(F

:5
T

:0
C

:0
)

0
.2

8
%

(F
:1

4
T

:0
C

:0
)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

4
8

.6
7

%
(4

8
.6

7
%

–
4

8
.6

8
%

)
4

8
.7

7
%

(4
8

.7
3

%
–

4
8

.8
0

%
)

9
9

.9
6

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



188 Biometric Systems

A
lg

o
ri

th
m

SA
G

1
o

n
d

at
a

b
a

se
D

B
1

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

2.
48

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

96
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

0
.6

7
%

(0
.6

7
%

–
0

.6
8

%
)

0
.6

7
%

(0
.6

7
%

–
0

.6
8

%
)

2
.1

1
%

5
3

.1
3

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 189

A
lg

o
ri

th
m

SA
G

1
o

n
d

at
a

b
a

se
D

B
2

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

2.
63

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
1.

03
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

0
.6

1
%

0
.6

1
%

1
.3

6
%

5
0

.6
9

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



190 Biometric Systems

A
lg

o
ri

th
m

SA
G

1
o

n
d

at
a

b
a

se
D

B
3

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

5.
70

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
2.

13
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

3
.6

4
%

3
.6

4
%

6
.8

2
%

1
0

0
.0

0
%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 191

A
lg

o
ri

th
m

SA
G

1
o

n
d

at
a

b
a

se
D

B
4

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

1.
90

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

77
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

1
.9

9
%

(1
.9

8
%

–
2

.0
0

%
)

1
.9

9
%

(1
.9

8
%

–
2

.0
0

%
)

6
.7

1
%

1
0

0
.0

0
%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



192 Biometric Systems

A
lg

o
ri

th
m

SA
G

2
o

n
d

at
a

b
a

se
D

B
1

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
88

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

88
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

1
.1

7
%

(1
.1

5
%

–
1

.1
8

%
)

1
.1

7
%

(1
.1

5
%

–
1

.1
8

%
)

3
.0

7
%

7
4

.5
7

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 193

A
lg

o
ri

th
m

SA
G

2
o

n
d

at
a

b
a

se
D

B
2

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
93

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

93
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

0
.8

2
%

0
.8

2
%

2
.1

4
%

1
0

0
.0

0
%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



194 Biometric Systems

A
lg

o
ri

th
m

SA
G

2
o

n
d

at
a

b
a

se
D

B
3

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

1.
94

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
1.

94
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

4
.0

1
%

(3
.9

8
%

–
4

.0
4

%
)

4
.0

1
%

(3
.9

8
%

–
4

.0
4

%
)

9
.5

0
%

1
0

0
.0

0
%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)a
n

d
F

N
M

R
(

)
t

t
R

O
C

cu
rv

e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 195

A
lg

o
ri

th
m

SA
G

2
o

n
d

at
a

b
a

se
D

B
4

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
69

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

69
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

3
.1

1
%

3
.1

1
%

1
0

.5
7

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



196 Biometric Systems

A
lg

o
ri

th
m

U
IN

H
o

n
d

at
a

b
a

se
D

B
1

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
53

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

56
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

1
.7

1
%

(F
:1

2
T

:0
C

:0
)

2
7

4
5

4
9

1
1

1
.7

1
%

(F
:4

7
T

:0
C

:0
)

6
.9

6
%

(F
:3

4
2

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

2
1

.0
2

%
(2

0
.9

1
%

–
2

1
.1

4
%

)
2

0
.6

5
%

(2
0

.6
4

%
–

2
0

.6
6

%
)

8
2

.0
0

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 197

A
lg

o
ri

th
m

U
IN

H
o

n
d

at
a

b
a

se
D

B
2

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
60

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

65
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.8

6
%

(F
:6

T
:0

C
:0

)
2

7
6

8
4

9
2

2
1

.4
5

%
(F

:4
0

T
:0

C
:0

)
5

.5
7

%
(F

:2
7

4
T

:0
C

:0
)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

1
5

.2
2

%
(1

5
.2

1
%

–
1

5
.2

4
%

)
1

4
.7

0
%

5
6

.1
1

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



198 Biometric Systems

A
lg

o
ri

th
m

U
IN

H
o

n
d

at
a

b
a

se
D

B
3

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

1.
28

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
1.

36
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

1
0

.2
9

%
(F

:7
2

T
:0

C
:0

)
2

5
5

1
4

5
8

1
9

.2
1

%
(F

:2
3

5
T

:0
C

:0
)

6
.7

7
%

(F
:3

1
0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

1
6

.3
2

%
(1

6
.1

3
%

–
1

6
.5

0
%

)
1

0
.1

4
%

4
1

.2
4

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 199

A
lg

o
ri

th
m

U
IN

H
o

n
d

at
a

b
a

se
D

B
4

_
A

A
ve

ra
ge

en
ro

ll
ti

m
e:

0.
42

se
co

n
d

s
A

ve
ra

ge
m

at
ch

ti
m

e:
0.

45
se

co
n

ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

2
.1

4
%

(F
:1

5
T

:0
C

:0
)

2
7

3
8

4
8

3
9

2
.8

1
%

(F
:7

7
T

:0
C

:0
)

5
.1

0
%

(F
:2

4
7

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

2
4

.7
7

%
(2

4
.7

4
%

–
2

4
.8

0
%

)
2

3
.7

4
%

(2
3

.7
1

%
–

2
3

.7
6

%
)

9
7

.2
2

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



200 Biometric Systems

A
lg

o
ri

th
m

U
T

W
E

o
n

d
at

a
b

a
se

D
B

1
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

10
.4

0
se

co
n

d
s

A
ve

ra
ge

m
at

ch
ti

m
e:

2.
10

se
co

n
ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

7
.9

8
%

(4
.0

0
%

–
1

1
.9

6
%

)
7

.9
8

%
(4

.0
0

%
–

1
1

.9
6

%
)

4
4

.0
0

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 201

A
lg

o
ri

th
m

U
T

W
E

o
n

d
at

a
b

a
se

D
B

2
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

10
.4

2
se

co
n

d
s

A
ve

ra
ge

m
at

ch
ti

m
e:

2.
12

se
co

n
ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

1
0

.6
5

%
(4

.1
6

%
–

1
7

.1
4

%
)

1
0

.6
5

%
(4

.1
6

%
–

1
7

.1
4

%
)

4
6

.5
7

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



202 Biometric Systems

A
lg

o
ri

th
m

U
T

W
E

o
n

d
at

a
b

a
se

D
B

3
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

10
.4

4
se

co
n

d
s

A
ve

ra
ge

m
at

ch
ti

m
e:

2.
31

se
co

n
ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

1
7

.7
3

%
(4

.0
6

%
–

3
1

.3
9

%
)

1
7

.7
3

%
(4

.0
6

%
–

3
1

.3
9

%
)

6
8

.8
2

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 203

A
lg

o
ri

th
m

U
T

W
E

o
n

d
at

a
b

a
se

D
B

4
_

A

A
ve

ra
ge

en
ro

ll
ti

m
e:

10
.4

2
se

co
n

d
s

A
ve

ra
ge

m
at

ch
ti

m
e:

4.
17

se
co

n
ds

R
E

J E
N

R
O

L
L

N
G

R
A

N
IR

A
R

E
J N

G
R

A
R

E
J N

IR
A

0
.0

0
%

(F
:0

T
:0

C
:0

)
2

8
0

0
4

9
5

0
0

.0
0

%
(F

:0
T

:0
C

:0
)

0
.0

0
%

(F
:0

T
:0

C
:0

)

E
E

R
E

E
R

*
Z

e
ro

F
M

R
Z

e
ro

F
N

M
R

2
4

.5
9

%
(4

.7
9

%
–

4
4

.3
9

%
)

2
4

.5
9

%
(4

.7
9

%
–

4
4

.3
9

%
)

9
4

.2
9

%
1

0
0

.0
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

0
1

th
re

sh
o

ld

F
M

R
F

N
M

R
1

1
0

–
1

1
0

–
2

1
0

–
3

F
N

M
R

1
0

–
1

1
0

–
2

1
0

–
3

1
0

–
4

1
0

–
5

F
M

R
0

m
a

x

0
1

th
re

sh
o

ld

Im
p

o
st

o
rs

G
e

n
u

in
e

s

S
co

re
d

is
tr

ib
u

ti
o

n
s

F
M

R
(

)
a

n
d

F
N

M
R

(
)

t
t

R
O

C
cu

rv
e



References

[1] J. Barron, D. Fleet and S. Beauchermin, Systems and experiment: performance
of optical flow techniques. Int. J. Computer Vision, 12(1), 43–77, 1994.

[2] G. Doddington, M. Przybocki, A. Martin and D. Reynolds, The NIST speaker
recognition evaluation – overview, methodology, systems results, perspec-
tive. Speech Communication, 31(2–3), 225–254, 2000. Available online at
http://www.nist.gov/speech/publications/.

[3] R. Cappelli, A. Erol, D. Maio and D. Maltoni, Synthetic fingerprint-image gen-
eration. Proc. 15th International Conference on Pattern Recognition
(ICPR2000), Barcelona, September 2000.

[4] R. Cappelli, D. Maio and D. Maltoni, Combining fingerprint classifiers, Proc.
First International Workshop on Multiple Classifier Systems (MCS2000).
Cagliari, June 2000, pp. 351–361.

[5] R. Cappelli, D. Maio and D. Maltoni, Modelling plastic distortion in finger-
print images, Proc. 2nd International Conference on Advances in Pattern Rec-
ognition (ICAPR2001). Rio de Janeiro, March 2001.

[6] C. Dorai, N. K. Ratha and R. M. Bolle, Detecting dynamic behaviour in com-
pressed fingerprint videos: distortion. Proc. CVPR 2000, Hilton Head, June
2000, Vol. II, pp. 320–326.

[7] FVC2000 web site: http://bias.csr.unibo.it/fvc2000/.
[8] A. Hoover, R. B. Fisher, G. Jean-Baptiste, X. Jiang, P. J. Flynn, H. Bunke, D. B.

Goldgof, K. Bowyer, D. W. Eggert and A. Fitzgibbon, An experimental compar-
ison of range image segmentation algorithms. IEEE Trans. Pattern Analysis
and Machine Intelligence, 18(7), 673–689, 1996.

[9] A. K. Jain, R. Bolle and S. Pankanti (eds), Biometrics – Personal Identification
in Networked Society. Kluwer Academic, 1999.

[10] A. K. Jain, S. Prabhakar and L. Hong, A multichannel approach to fingerprint
classification. IEEE Trans. Pattern Analysis and Machine Intelligence, 21(4),
348–359, 1999.

[11] A. K. Jain, S. Prabhakar and A. Ross, Fingerprint matching: data acquisition
and performance evaluation. MSU Technical Report TR99–14, 1999.

[12] H.C.Lee and R.E.Gaensslen,Advances in Fingerprint Technology.Elsevier,1991.
[13] J. Matas, M. Hamouz, K. Jonsson, J. Kittler, Y. Li, C. Kotropoulos, A. Tefas, I.

Pitas, T. Tan, H. Yan, F. Smeraldi, N. Capdevielle, W. Gerstner, Y. Abdeljaoued, J.
Bigun, S. Ben-Yacoub andE. Mayoraz, Comparison of face verification results
on the XM2VTS database. Proc. 15th International Conference on Pattern Rec-
ognition, Barcelona, September 2000, Vol. 4, pp. 858–863.

[14] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman and A. K. Jain, FVC2000: finger-
print verification competition. DEIS Technical Report BL-09–2000, University
of Bologna. Available online at http://bias.csr.unibo.it/fvc2000/.

[15] D. Maio and D. Maltoni, Direct gray-scale minutiae detection in fingerprints.
IEEE Trans. Pattern Analysis and Machine Intelligence, 19(1), 27–40 , 1997.

[16] P. J. Phillips, H. Moon, S. A. Rizvi and P. J. Rauss, The FERET evaluation meth-
odology for face-recognition algorithms. IEEE Trans. Pattern Analysis and
Machine Intelligence, 22(10), 1090–1104, 2000.

[17] P. J. Phillips, A. Martin, C.L. Wilson and M. Przybocky, An introduction to
evaluating biometric systems. IEEE Computer Magazine, 33, 56–63, 2000.
Available online at http://www.frvt.org/DLs/FERET7.pdf.

[18] P. J. Phillips and K. W. Bowyer, Introduction to special section on empirical
evaluation of computer vision algorithms. IEEE Trans. Pattern Analysis and
Machine Intelligence, 21(4), 289–290, 1999.

204 Biometric Systems



[19] T. Randen and J. H. Husoy, Filtering for texture classification: a comparative
study. IEEE Trans. Pattern Analysis and Machine Intelligence, 21(4), 291–310,
1999.

[20] A. J. Mansfield and J. L. Wayman, Best Practices in Testing and Reporting Per-
formance of Biometric Devices, Version 2.02. UK Government Biometrics
Working Group, August 2002. Available online at http://www.cesg.uk.gov/
site/ast/biometrics/media/BestPractice.pdf.

[21] C. I. Watson and C. L. Wilson, NIST Special Database 4, Fingerprint Database.
US National Institute of Standards and Technology, 1992.

[22] C. I. Watson, NIST Special Database 14, Fingerprint Database. US National
Institute of Standards and Technology, 1993.

[23] C. I. Watson, NIST Special Standard Reference Database 24, NIST Digital Video
of Live-Scan Fingerprint Database. US National Institute of Standards and
Technology, 1998.

[24] J. L. Wayman, Technical testing and evaluation of biometric devices, in A. Jain
et al. (eds), Biometrics – Personal Identification in Networked Society, Kluwer
Academic, 1999.

[25] J. L. Wayman, The Philippine AFIS benchmark test, in National Biometric Test
Center Collected Works, 1997–2000, September 2000. San Jose University.

[26] X. Jiang, W.-Y. Yau and W. Ser, Minutiae extraction by adaptive tracing the
gray level ridge of the fingerprint image. IEEE ICIP’99, Japan, 1999.

[27] X. Jiang and W.-Y. Yau, Fingerprint minutiae matching based on the local and
global structures. Proc. 15th International Conference on Pattern Recogni-
tion, Barcelona, September 2000.

[28] S. Pankanti, S. Prabhakar and A. K. Jain, On the individuality of fingerprints.
Proc. IEEE CVPR, Hawaii, December 2001, pp. 805–812.

[29] R. Cappelli, D. Maio and D. Maltoni, Synthetic fingerprint-database genera-
tion. Proc. 16th ICPR, 2002.

[30] FVC2002 web site: http://bias.csr.unibo.it/fvc2002/.
[31] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman and A. K. Jain, FVC2000: finger-

print verification competition. IEEE Trans. Pattern Analysis and Machine
Intelligence, 24(3), 402–412, March 2002.

[32] A. Mansfield, G. Kelly, D. Chandler and J. Kane, Biometric Product Testing
Final Report, Issue 1.0. UK National Physical Laboratory, March 19, 2001.
Available online at: http://www.cesg.gov.uk/site/ast/biometrics/
media/BiometricTestReportpt1.pdf.

[33] FVC2004 web site: http://bias.csr.unibo.it/fvc2004/.

Chapter 6 · Technology Evaluation of Fingerprint Verification Algorithms 205



7Methods for Assessing
Progress in Face Recognition

P. Jonathon Phillips, Duane Blackburn, Patrick Grother, Elaine
Newton and J. Mike Bone

7.1 Introduction

Evaluations measure the performance and effectiveness of biometrics. His-
torically, detailed evaluations have been limited to face, fingerprint and
speaker recognition. Biometrics, along with character recognition and
speech recognition, is one of the few areas in pattern recognition, signal
processing and computer vision that have a history of evaluations. Evalua-
tions are effective in these disciplines because performance metrics are
easily defined. Regular evaluations have been instrumental in advancing
the capabilities of automatic face recognition algorithms.

Evaluations are one of two methods for measuring progress in face rec-
ognition that will be addressed in this chapter. The other method is meta-
analysis. Meta-analysis is a statistical technique for examining experi-
mental results across multiple papers in a field – for example, face recogni-
tion papers published in the scientific literature. From an in-depth analysis
of the results from multiple papers, an assessment of progress can be made.
Both methods are complementary, with each having a role in measuring
progress. Together, evaluations and meta-analysis present a more compre-
hensive assessment of biometric performance. These methods are also
relevant to all areas of biometrics.

A theory and philosophy for evaluation of biometrics is presented in
Phillips et al. [1], where evaluations are divided into three categories: tech-
nology, scenario and operational. We will restrict our discussion to tech-
nology evaluations (because there exist a number of well-defined
technology evaluations) and accepted protocols for performing them.

The gold standard in technology evaluations is an ‘independently
administered evaluation’. Independent evaluations are the gold standard
because they produce unbiased assessments. In a technology evaluation,
face recognition systems are evaluated on the same images and under the
same conditions. This allows for the direct comparison among evaluated
systems, assessments of individual systems’ strengths and weaknesses, and
insight into the overall state of the systems’ field. Examples of gold stan-
dard evaluations are FERET [2, 3], Face Recognition Vendor Test (FRVT)
2000 [35], Fingerprint Verification Competition (FVC) 2000 and 2002
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[44–46], and NIST Speaker Recognition Competitions [47, 48]. Key proper-
ties of an independent evaluation are: (1) the system developers and testers
are separate and independent groups; (2) the systems are evaluated on
sequestered data; and (3) all systems are evaluated using the same data.

We examine evaluations by looking at the three FERET evaluations and
the Face Recognition Vendor Test (FRVT) 2000. Our analysis shows that peri-
odic evaluations have made significant contributions to advancing the capa-
bilities of face recognition technology over the past decade. In addition, we
identify three key areas for future research in automatic face recognition.

An evaluation provides an assessment of the state of the art of a given
field at the time of the evaluation. By its nature, an evaluation measures the
performance of mature systems. This is because evaluations are normally
conducted under competitive conditions where participants have opti-
mized their systems for the specific evaluation. In order to gain a compre-
hensive assessment of face recognition, one also needs to understand
performance trends over time, and what potential breakthroughs are on
the horizon. This is found through meta-analysis.

Meta-analysis is a quantitative method for analyzing results from multiple
papers on the same subject [28, 29]. Meta-analysis can be performed to con-
solidate a group of experimental results or to gain deeper insight into meth-
odological techniques in a field. Meta-analysis has been used extensively in
medicine, psychology and the social sciences. Its effectiveness in face recog-
nition has also been demonstrated in Phillips and Newton [39], which pres-
ents the first meta-analysis in face recognition, biometrics and computer
vision. This meta-analysis examines two key issues necessary for the
advancement of face recognition. First, is the research community working
on the hard issues in the field (e.g. those identified in relevant studies and
evaluations such as the FERET evaluations and FRVT 2000)? Second, are the
algorithms being developed by the research community significant break-
throughs in face recognition, or are they marginal improvements? If the
research community expects to make progress and contribute to advancing
face recognition, the answers to both of these questions must be yes.

7.2 Face Recognition Evaluations

Independent evaluations have been a critical component of face recognition
technology development for the last decade. They have simultaneously mea-
sured and driven progress in the field. Independent evaluations allow for an
unbiased assessment of the current state of the art, identify the most promising
approaches, assess the strengths and weaknesses of both individual approaches
and the field as a whole, and identify promising research directions.

7.2.1 Introduction to FERET and FRVT 2000

The three FERET evaluations were the first of their kind conducted in the
face recognition community, and proved to be one of the key catalysts in

208 Biometric Systems



advancing face recognition from its infancy to prototype systems. The
FERET evaluations were administered between 1994 and 1996, with the last
FERET evaluation measuring the performance of prototype laboratory
systems. Between the last FERET evaluation and the beginning of 2000, face
recognition matured from prototype laboratory systems to commercially
available systems. The Face Recognition Vendor Test (FRVT) 2000 mea-
sured the capabilities of these commercial systems as well as progress in
the field.

The FERET evaluations and FRVT 2000 were technology evaluations.
Technology evaluations measure performance of core face recognition
technology, and provide an assessment of the state of the art. Technology
evaluations do not directly measure the performance of biometrics sys-
tems for general or specific applications. Measuring performance for spe-
cific applications is the province of scenario and operational evaluations.
Scenario and operational evaluations test biometric systems in field condi-
tions and may take into consideration such factors as the sensors, system
integration, human–computer interfaces, operational considerations, and
the business model associated with implementing a biometric solution.
Technology evaluations provide a more general guide as to which applica-
tions a biometric is best suited. A technology evaluation identifies bio-
metric applications that are ready for scenario and operational
evaluations, and the systems most likely to succeed for an application. For a
detailed discussion of the properties and roles of technology, scenario, and
operational evaluations, see Phillips et al. [1].

Technology evaluations, such as the FERET evaluations and FRVT 2000,
test face recognition algorithms using digital images. The images are
acquired prior to the evaluation and sequestered. Sequestering the images
enables the algorithms to be tested on images that they have not seen before.
This means that the evaluations are repeatable and that all algorithms are
tested with the same sets of images. This makes it possible to directly com-
pare performance among the algorithms and the systems that are tested.

The FERET evaluations were one component of a much larger FERET
program. The other two components were the FERET database collection
effort and FERET algorithm development effort. The goal of the FERET
program was to develop and advance face recognition from its infancy in
1993 to a viable technology [42]. To support technology development and
evaluation, the FERET database of still facial images was collected. In order
to measure progress, a series of three FERET evaluations were adminis-
tered. The three FERET evaluations took place in August 1994, March 1995
and September 1996.

At the start of the FERET program, face recognition was in its infancy
and it was an open question whether or not automatic face recognition was
a viable technology. In addition, prior to the first FERET evaluation, there
were no independent assessments of the performance of face recognition
algorithms. The goals of the FERET evaluations were to show that auto-
matic face recognition was viable, measure progress, identify promising
approaches and determine whether key milestones were met in the FERET
program.
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The August 1994 evaluation established the first independent assess-
ment of automatic face recognition performance [3]. It demonstrated that
face recognition had the potential to become a viable technology and pro-
vided a baseline performance standard for face recognition algorithms.
Subsequent FERET evaluations confirmed that automatic face recognition
was a viable technology. The August 1994 evaluation measured the
performance of four algorithms.

Table 7.1 lists the participants in the FERET evaluations. Baseline perfor-
mance was established on a gallery of 316 individuals. The evaluation mea-
sured the performance of fully automatic algorithms. Fully automatic
algorithms can automatically locate, normalize, and identify faces from a
database. A partially automatic algorithm is given the coordinates of both
eyes. Thus, partially automatic algorithms do not need to locate the face in
an image. The gallery contains the set of known individuals. An image of an
unknown face presented to the algorithm is called a probe, and the collec-
tion of probes is called the probe set. Since there is only one face in an
image, sometimes “probe” refers to the identity of the person in a probe
image.

The second FERET evaluation (March 1995) measured progress since the
August 1994 evaluation and tested algorithms on larger galleries [3]. The
March 1995 evaluation consisted of a single test with a gallery of 817 known
individuals. Like the August 1994 evaluation, the March 1995 evaluation
tested fully automatic algorithms. The primary emphasis of this test was to
measure performance using probe sets that contained duplicate probes on
a gallery larger than the galleries in the August 1994 test. A duplicate probe
is usually an image of a person whose corresponding gallery image was
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Evaluation

Version of test Group August 1994 March 1995 September 1996

Fully automatic MIT [16, 17] � � �

Rockefeller [54] �

Rutgers [36] �

TASC [7] �

USC [18] � � �

Partially automatic Baseline [2] �

Excalibur �

MIT [16, 17] (2)

MSU [27] �

Rutgers [36] �

UMD [27] (2)

USC [18] �

Table 7.1 Groups that participated in the FERET evaluations. Participants are broken out by each
evaluation. In the September 1996 evaluation, two partially automatic systems were tested from
both MIT and UMD. To provide benchmark performance scores, the September 1996 evaluation
organizers implemented a baseline PCA face recognition algorithm.



taken on a different day (technically, the probe and gallery images were
from different image sets; see the description of the FERET database
above).

The third and final FERET evaluation was conducted in September 1996
[2]. This evaluation measured the performance of prototype systems. The
September 1996 evaluation tested both fully and partial automatic algo-
rithms. The testing of partially automatic algorithms allowed more groups
to participate and produced a more comprehensive assessment of the state
of face recognition. Six groups participated (five were from universities).
The September 1996 evaluation was administered twice: once in September
1996 and once in March 1997. This evaluation was designed to measure
progress over the course of the FERET program. As with the March 1995
test, the emphasis was upon measuring performance on duplicate images
and a large gallery of 1196 individuals (a gallery of 1196 was considered
very large in 1996). The September 1996 evaluation was open to groups out-
side of the FERET program, with four of the six participating groups being
from outside the FERET research program.

A major innovation of the FERET evaluations was the September 1996
FERET evaluation protocol. Prior to the September 1996 evaluation, gener-
ating performance scores for each gallery and probe set required a separate
run of an algorithm. The September 1996 FERET evaluation protocol made
it possible to compute performance in one run for multiple galleries and
probe sets. This provided a significant increase in the ability to measure
performance on a wide variety of galleries and probe sets. The multiple gal-
leries and probe sets made it possible to measure performance with
advanced statistical techniques. Advanced statistical techniques include
computing confidence intervals, performing multi-dimensional analysis,
and using resampling techniques [49, 50]. This same protocol was
subsequently used in the FRVT 2000.

There was rapid advancement in the development of commercial face
recognition systems following the success of the FERET program. This
advancement represented not only a maturing of face recognition tech-
nology, but also the development of the systems and algorithmic infra-
structure necessary to create commercial off the shelf (COTS) systems.
Developing systems included converting and porting the code from proto-
type systems to production-quality code that ran on commercial systems,
designing and developing human–computer interfaces for use by non-
technical operators, and developing standard interfaces for contending
with larger systems and databases. By the beginning of 2000, COTS face rec-
ognition systems were readily available. The Face Recognition Vendor Test
(FRVT) 2000 was subsequently organized to assess the state of the art in
COTS face recognition systems [35].

Participation in the FRVT 2000 was restricted to companies that had
commercially available systems. Participants included companies from the
USA, Australia and Germany. Five companies participated: Banque-Tec
International Pty Ltd, C-VIS Computer Vision und Automation GmbH,
Miros, Inc, Lau Technologies and Visionics Corporation.
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7.2.2 September 1996 FERET Evaluation Protocol

A design principle and testing protocol describe how evaluations are
designed and conducted. Design principles outline the core philosophy
and guiding beliefs in designing an evaluation; the evaluation protocol
provides the implementation details.

The FERET evaluations and FRVT 2000 design followed the precepts for
biometrics evaluations articulated in Phillips et al. [1]. Succinctly stated,
the precepts are:

1. Evaluations are designed and administered by groups that are inde-
pendent of algorithm developers and vendors being tested.

2. Test data is sequestered and not seen by the participants prior to an
evaluation.

3. The evaluation test design, protocol and methodology are published.
4. Performance results are spread in a manner that allows for meaningful

differences among the participants.

Points 1 and 2 ensure fairness in an evaluation. Point 1 provides assurance
that the test is not designed to favor one participant over another. Inde-
pendent evaluations help enforce points 2 and 4. In addition, point 2
ensures that systems are evaluated on their ability to generalize perfor-
mance to new sets of faces, not the ability of the system to be tuned to a par-
ticular set of faces. When judging and interpreting results, it is necessary to
understand the conditions under which algorithms and systems are tested.
These conditions are described in the evaluation test design, protocol and
methodology. Tests are administered using an evaluation protocol that
identifies the mechanics of the tests and the manner in which the tests will
be scored. In face recognition, the protocol states the number of images of
each person in the test, how the output from the algorithm is recorded, and
how the performance results are reported. Publishing the evaluation pro-
tocol, as recommended in point 3, lets the readers of published results
understand how the results were computed. Point 4 addresses the three
bears problem. If all the scores for all algorithms are too high and within the
same error margin, then one cannot distinguish among the algorithms
tested. In addition, if the scores are too high in an evaluation, then that is an
indication that the evaluation was in reality an exercise in ‘tuning’ algo-
rithm parameters. If the scores are too low, then it is not possible to deter-
mine what problems have been solved.

The goal in designing an evaluation is to have variation among the
scores. There are two sorts of variation. The first type is variation among
the experiments in an evaluation. Most evaluations consist of a set of
experiments, where each experiment reports performance on different
problems in face recognition. For example, experiments might look at
changes in lighting, or subject pose of a face. The second type of variation is
among algorithms for each experiment. Both types of variation are
required. The variation in performance among the experiments lets one
know which problems are currently sufficiently solved for consideration in
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operational testing, which problems are research problems, and which
problems are beyond the capabilities of the field. The performance varia-
tion among algorithms lets one know which techniques are best for a par-
ticular experiment. If all the scores for all algorithms across all
experiments are virtually the same, then one cannot distinguish among the
algorithms.

The key elements that ease adoption of points 3 and 4 can be incorpo-
rated into the evaluation protocol. For FERET and FRVT 2000, this was the
FERET September 1996 evaluation. This evaluation protocol was designed
to assess the state of the art, advance the state of the art, and point to future
directions of research. The ability to accomplish these three goals simulta-
neously was through a protocol whose framework allows for the computa-
tion of performance statistics for multiple galleries and probe sets. This
allows for the September 1996 evaluation protocol to solve the three bears
problem by including galleries and probe sets of different difficulties into
the evaluation. This produces a comprehensive set of performance statis-
tics that assess the state of the art and progress in face recognition, and
point to future directions of research.

The solution to the three bears problem lies in the selection of images
used in the evaluation. The characteristics and quality of the images are
major factors in determining the difficulty of the problem being evaluated.
For example, if faces are in a predetermined position within the images, the
problem is different from that for images in which the faces can be located
anywhere within the image. In the FERET database and FRVT 2000 data
sets, variability was introduced by the inclusion of images taken at different
dates and both outside and indoor locations. This resulted in changes in
lighting, scale and background.

The testing protocol is based on a set of design principles. The design
principles directly relate the evaluation to the face recognition problem
being evaluated. In particular, for FERET and FRVT 2000, the driving appli-
cations were searching large databases and access control. Stating the
design principles allow one to assess how appropriate the FERET tests and
FRVT 2000 are for a particular face recognition algorithm. Also, design
principles assist in determining if an evaluation methodology for testing
algorithm(s) for a particular application is appropriate.

The FERET evaluation protocol consists of two parts [2]. The first is the
rules for conducting an evaluation, and the second is the format of the
results that allow for scoring. The last level of detail is the file formats for
the images given to algorithms and the file specifications for the output.
This level of detail depends on the evaluation being conducted and is
beyond the scope of this chapter.

The inputs to an algorithm or system being evaluated are two sets of
images: the target and query sets. Galleries and probe sets are constructed
from the target and query sets respectively. The output from an algorithm
is a similarity measure between all pairs of images from the target and
query sets. A similarity measure is a numerical measure of how similar two
faces are. Performance statistics are computed from the similarity mea-
sures. A complete set of similarity scores between all pairs of images from
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the target and query set is referred to as a similarity matrix. The first rule in
the FERET evaluation protocol is that a complete similarity matrix must be
computed. This rule guarantees that performance statistics can be
computed for all algorithms.

To be able to compute performance for multiple galleries and probe sets
requires that multiple images of a person are placed in both the target and
query sets. This leads to the second rule: each image in the target and query
sets is considered to contain a unique face. In practice, this rule is enforced
by giving every image in the target and query set a unique random
identifier.

The third rule is that training is completed prior to the start of an evalua-
tion. This forces each algorithm to have a general representation for faces,
not a representation tuned to a specific gallery. Also, if training were spe-
cific to a gallery, it would not be possible to construct multiple galleries and
probe sets from a single run. An algorithm would have to be retrained and
the evaluation rerun for each gallery.

Using target and query sets allows us to compute performance for dif-
ferent categories of images. Possible probe categories include (1) gallery
and probe images taken on the same day, (2) duplicates taken within a week
of the gallery image, and (3) duplicates where the time between the images
is at least one year. This is illustrated in the following example. A target and
query set consist of images of face taken both indoors and outdoors, with
two different facial expressions, and taken on two days. Thus there are eight
images of every face. From these target and query sets, one can measure the
effects of indoor versus outdoor illumination by constructing a gallery of
indoor images with neutral expressions taken on the first day, and the
probe set would consist of outdoor images with neutral expressions taken
on the first day. Construction of similar galleries and probe sets would
allow one to test the effects of temporal changes or expression changes. It is
the ability to construct galleries from the target set and probe sets from the
query set that allows the FERET September 1996 protocol to perform a
detailed analysis.

The FERET September 1996 protocol is sufficiently flexible for sub-
sampling and resampling statistical estimation techniques. For example,
one can create a gallery of 100 people and estimate an algorithm’s perfor-
mance of recognizing people in this gallery. Using this as a starting
point, we can then create galleries of 200, 300, ..., 1,000 people and deter-
mine how performance changes as the size of the gallery increases. Another
avenue of investigation is to create n different galleries of size 200, and cal-
culate the variation in algorithm performance with the different galleries
[37].

The FERET September 1996 evaluation protocol allows for the computa-
tion of performance statistics for both identification and verification sce-
narios. Identification is also referred to as “1 to n” and “one to many”
matching. Verification is also referred to as authentication and “1 to 1"
matching. In an identification application, the gallery (database) consists
of a set of known faces. Identification models real-world law enforcement
applications where a large electronic mugbook is searched. The input to the
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system is a probe image of an unknown face. The face recognition system
then returns the closest match to the probe in the gallery. A probe is cor-
rectly identified if the closest match between the probe and gallery images
is the same person. In this chapter we report the fraction of probes in a
probe set that are correctly identified. In the general case, the top n closest
matches in the gallery are reported. The choice of the number of matches
reported is dependent of the specific application. The top n matches are
reported on a cumulative match characteristic. For details on identification
performance statistics see Phillips et al. [2]; a tutorial on biometric
performance measures can be found in Bone and Blackburn [52].

In a verification application, a system is presented with a face and a
claimed identity. The system compares the new image to a stored image
of the face of the claimed identity. If the match between the two images is
sufficiently close, the system accepts the claim; otherwise, it is rejected.
Performance for verification is reported on a receiver operating character-
istic (ROC) curve. Verification performance can be found elsewhere [2, 35,
40].

7.2.3 Data Sets

The FERET database was designed to advance the state of the art in face rec-
ognition, with the images collected to support both algorithm development
and the FERET evaluation. During the FERET program approximately one-
third of the database was released to researchers for algorithm develop-
ment with the remaining images sequestered for testing. The images in the
development set are representative of the sequestered images. After the
conclusion of the FERET and FRVT 2000 evaluations, the entire FERET
database was made available to the research community1.

In the FERET database, the facial images were collected in 15 sessions
between August 1993 and July 1996. Collection sessions lasted one to two
days. In an effort to maintain a degree of consistency throughout the data-
base, the same physical setup and location were used in each photography
session. The setup was a portable studio that consisted of a gray backdrop, a
stool for the subject to sit on, and two photographic studio lights on either
side of the subject. Thus, subjects were illuminated from both sides. In this
chapter, this is referred to as FERET lighting. However, because the equip-
ment in the portable studio had to be reassembled for each session, there
was variation from session to session (Figure 7.1).

Images of an individual were acquired in sets of 5 to 11 images, collected
under relatively unconstrained conditions. Two frontal views were taken
(fa and fb); a neutral expression was requested for the first image (fa
image), and a different facial expression was requested for the second
frontal image (fb image). For 200 sets of images, a third frontal image was
taken with a different camera and different lighting (this is referred to as
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the fc image). The remaining images were collected at various aspects
between right and left profile. To add simple variations to the database,
photographers sometimes took a second set of images, for which the sub-
jects were asked to put on their glasses and/or pull their hair back. Some-
times a second set of images of a person was taken on a later date; such a set
of images is referred to as a duplicate set. Duplicates sets result in variations
in scale, pose, expression and illumination of the face. Duplicate images
refer to both multiple sets of images in a database and to a probe that is
from a different set than the gallery image of a person. Usually, a duplicate
probe of a person is taken on a different day than the gallery image of that
person.

After three years of data collection, the FERET database contained 1564
sets of images consisting of 14,126 total images. The database contains 1199
individuals and 365 duplicate sets of images. For some people, over two
years had elapsed between their first and most recent sittings, with some
subjects being photographed multiple times (Figure 7.1). The development
portion of the database consisted of 503 sets of images and was released to
researchers. The remaining images were sequestered.

In the September 1996 FERET evaluation, the target set contained 3323
images and the query set 3816 images. The target set consisted of fa and fb
frontal images. The query set consisted of all the images in the target set
plus the fc, rotated and digitally modified images. The digitally modified
images in the query set were designed to test the effects of illumination
and scale. (Results from the rotated and digitally modified images are
not reported here.) The similarity matrix for the September 1996 evalua-
tion consisted of 12.5 million similarity scores. Since the target set is a
subset of the query set, the test output contains the similarity score
between all images in the target set. (Note: having the target set as a subset
of the query set does not constitute training and testing on the same
images. This is because the face representation is learned prior to the start
of the test.) Participants had 72 hours to complete the September 1996
evaluation.

The images in FRVT 2000 came from three sources. In order to measure
progress since the September 1996 FERET evaluation and to provide a con-
trol, FERET images where included. The second source was digitally modi-
fied FERET images. The modifications were designed to measure the
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Figure 7.1 Examples of FERET image and probe categories. (a) Gallery image – fa image; (b) FB
probe – fb from same session as (a); (c) dup I probe – different day from (a); (d) dup II probe – taken
at least one year from (a); (e) fc probe – fc image from same session as (a).



impact of compression and changes in resolution on performance. The
third source was images from hBase. The hBase is the repository of data
collected to support algorithm development and evaluation for the Defense
Advanced Research Project Agency’s (DARPA) HumanID program [41].
The hBase data included in FRVT 2000 was collected at the National Insti-
tute of Standards and Technology (NIST) in 1999 and 2000, and at the
Navy’s facility at Dahlgren, VA, in 1998 and 1999. The images from the
hBase included in FRVT 2000 were sequestered prior to testing.

The images in the Dahlgren 1998 collection were taken indoors using a
digital camera and computer-based image capture card. The collection was
uncontrolled, and resulted in significant variations in background and
lighting conditions.

The remaining Dahlgren and NIST data collections used the same collec-
tion protocol. Both indoor and outdoor images were collected. The indoor
still image collection was an extension of the FERET image collection pro-
tocol. The protocol was extended by adding a digital camera and an addi-
tional lighting condition. Six different frontal images of each subject were
taken on 35 mm film and with a digital CCD camera. The images collected
on 35 mm film were digitized prior to inclusion in the hBase and used in
FRVT 2000. Images were collected under three lighting conditions: FERET-
style two side lamps, NIST best recommended practice mugshot lighting,
and ambient lighting (overhead fluorescent lighting). The overhead
lighting is similar to the FERET fc images. For each of the three different
lighting conditions, two expressions were collected: neutral and alternate
facial expressions. The neutral expression corresponds to the FERET fa
image and the alternate corresponds to the FERET fb image. The 35 mm
film and digital image for a person for a fixed expression and lighting con-
dition were taken almost simultaneously, within a tenth of a second of each
other.

Two images of each person were taken outdoors with a digital CCD
camera. One was a frontal image and the other was at a pose angle of 45°. In
this chapter, results are only reported for experiments that include the
frontal outdoor images. The background was periodically changed and
illumination varied because of the diurnal cycle, changes in weather and
changes in the background.

The full image data set for FRVT 2000 consisted of 13,872 images of 1,462
individuals. The first part, containing 5,416 images from 1,201 subjects
were from the FERET database. The second part consisted of 3,730 images
that were digitally generated from FERET images. These images were probe
sets in the JPEG compression and resolution experiments. The third part
was 4,726 images from 262 subjects from the hBase, the HumanID database.
A full description of the FRVT 2000 data set is at Blackburn et al. [35,
Appendices G and K].

In FRVT 2000, the target and query set were the same set of images. This
set contained 13,872 images, and the similarity matrix consisted of 192 mil-
lion similarity scores. In the FRVT 2000, participants had to perform the
192 million matches in 72 hours. This is compared to 12.5 million matches
in the same time period for the September 1996 FERET evaluation.
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7.2.4 FERET and FRVT 2000 Results

The FERET evaluations and the FRVT 2000 evaluation are each a sequence
of evaluations that increase in difficulty and scope. The August 1994 FERET
evaluation established an independent baseline for algorithm perfor-
mance, with the majority of probes collected on the same day as the gallery
image. The FRVT 2000 measured performance for multiple experiments,
which provided a detailed assessment of the state of the art in face recogni-
tion. This increase in difficulty and scope of the evaluations represents
advancement in automatic face recognition technology, greater under-
standing into the strengths and weakness of the technology, and increased
sophistication of evaluation techniques.

In this chapter we look at performance across all three FERET evalua-
tions for four key categories of probes. Detailed descriptions of the FERET
results can be found elsewhere [2, 3, 40]. The fb probes consisted of images
that were taken within five minutes under the same lighting conditions as
the gallery image of that person. Scores from the fb probes represent an
empirical upper bound on performance for algorithms at the time of each
evaluation. The fc probes consisted of images taken within five minutes but
under a different lighting condition from the gallery image of a person. The
gallery images were taken under studio lighting conditions, and the fc
probes were taken with ambient overhead lighting. The fc probes examine
the sensitivity of algorithms to changes of illumination. The Dup I probes
contain faces of people in the gallery that were taken on different days or
under different conditions. The Dup I probes measures the effects of tem-
poral differences between gallery and probe images. The Dup II probes are
images of faces taken at least one year apart from the corresponding facial
image in the gallery. Table 7.2 summarizes the gallery and probe set size for
each of the three FERET evaluations. Not all probe categories were included
in all evaluations.

Summaries of identification performance for the four categories of
probes across the three FERET evaluations are given in Figures 7.2 and
Figure 7.3. The x-axis is the FERET evaluation. The y-axis is the probability
of correct identification. Figure 7.2 presents the best-performing algo-
rithm in each evaluation. Performance is reported by probe category. For
example, the best identification score for the fb probe category for the
August 1994 evaluation was 0.86. The fb (same day) and Dup I (different
day) probe categories were in all three evaluations. The fc (ambient
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August 1994 March 1995 September 1996

Gallery size 317 831 1196

fb probes (same day) 316 780 1195

Dup I probes (different day) 50 463 733

Dup II (one year apart) – – 234

fc probes (ambient lighting) – – 194

Table 7.2 Summary of the gallery and probe sets size for each of the FERET evaluations. Probe set
sizes are provide for FB, fc, Dup I and Dup II probe categories.



lighting) and Dup II (images taken over a year apart) probe categories were
only included in the September 1996 evaluation. Figure 7.3 presents the
average performance for algorithms that took an evaluation. For example,
the average identification score for Dup I probes in the September 1996
evaluation was 0.59.

For best performance, there was a steady increase in performance for the
fb probes across the three evaluations. The increase in performance
occurred while the size of the gallery increased, and hence the difficulty of
the problem increased. For average performance on the fb probes there is
an uneven absolute increase in performance. For the best Dup I scores, the
performance was the same for the March 1995 and September 1996 evalua-
tions. However, the composition of the Dup I probe set increased in diffi-
culty. The case of the fc probes is interesting. For average performance,
performance on the fc probes was lowest for the four probe categories.
However, fc performance was significantly higher for the best algorithm.

Each FERET evaluation was more difficult than the preceding evalua-
tions. Algorithm performance did not regress, the evaluations got harder.
The two most significant measures of difficulty are gallery size and the
number of duplicate probes. In the three FERET evaluations, the size of
the gallery increased in each of the evaluations. Therefore the difficulty of
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Figure 7.2 FERET performance scores for best algorithm. Performance scores for FB, Dup I, Dup II
and fc probe categories are given.
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the underlining problem being evaluated increased. In each evaluation the
number of duplicates increased and the time between acquisition of the
gallery image and corresponding duplicate probe increased. These results
show that there can be a significant difference in performance between the
“average” algorithm and the best algorithm.

The FERET evaluations showed significant advances in face recognition
technology development. The advances occurred both in terms of difficulty
and size of the problem. The FERET evaluations addressed the following
basic problems: the effects on performance of gallery size and temporal
variations. The next step in the face recognition evaluation process was to
measure performance for a greater number of probe categories. The greater
number of probe categories produced a more in depth assessment of the
state of the art in face recognition and examined issues directly related to
operational considerations.

The FRVT 2000 increased the number of probe categories to eight: com-
pression, distance, expression, illumination, media, pose, resolution and
temporal. Unlike the September 1996 FERET evaluation, in FRVT 2000 mul-
tiple experiments were performed for each probe category. Each experi-
ment corresponds to a different gallery and probe set. The number and size
of the galleries and probe sets varied by category. Three categories – com-
pression, pose and duplicates – contained experiments that used FERET
images. For the experiments that use FERET images, the best performance
score is reported without attribution to a specific vendor. For experiments
that use FRVT 2000 images, results are reported with attribution.

We will summarize the results from the FRVT 2000 by presenting top rank
identification scores for key results. Full cumulative match characteristics
(CMC) for identification and ROCs for verification, along with complete
details, can be found in Blackburn et al. [35]. Five vendors participated in
FRVT 2000; however, only C-VIS Computer Vision und Automation GmBH,
Lau Technologies and Visionics Corporation completed the tests. Results are
only presented for the three participants that completed the test.

We started by looking at the performance on the classic face recognition
problems identified in FERET: temporal variations (duplicate probes), illu-
mination changes and pose variations. We then presented results for three
new categories: effect of image compression on performance, effect on per-
formance on images taken on different media (digital images versus 35 mm
film) and effect of size of face on performance.

In FERET, the starting point for measuring performance was the fb (same
day) probes which provide an empirical upper bound on performance for a
system. For fb performance, the images of a person are taken in pairs, fa
and fb images, in the same session under the same lighting conditions. The
fa image was a neutral expression and fb was an alternative expression. The
fa was placed in the gallery and the fb was placed in the probe set. In FRVT
2000, the classic fb category performance was computed where the fa image
was in the gallery and the corresponding fb was in the probe set. In addi-
tion, performance was computed for an fa probe set. Here the fb image was
placed in the gallery, and the corresponding fa image was placed in the
probe set. For the FRVT 2000 fb and fa categories, all images were digital
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images with FERET-style lighting from the hBase data set. For the fa cate-
gory, the gallery consisted of 225 fa images and the probe set consisted of
228 fb images. For the fa category, the gallery consisted of 224 fb images
and the probe set consisted of 228 fa images. All images in both categories
came from the same set of 225 people. Identification rates for both
categories are shown in Figure 7.4.

For the vast majority of applications, the most important issue was the
ability of systems to recognize faces when there is a temporal change
between the gallery and probe images of a person. In the FERET nomencla-
ture, this is a duplicate probe set. FRVT 2000 measures duplicate perfor-
mance for two sets of experiments. Performance is computed for the FERET
September 1996 Dup I and Dup II probe sets (see Figure 7.5). Figure 7.5
reports the best performance of the FRVT 2000 participants on the Dup I
(different day) and Dup II (one year apart) probes. This shows some
improvement in performance from FERET on the Dup I probes. For the
Dup II probes, an increase from 0.52 on FERET to 0.64 on FRVT 2000.

The second set of duplicate performance scores was computed from
images collect at as part of the hBase program. Three experiments report
performance for three different galleries and one probe set. The probe set
consisted of 467 images with overhead lighting. The galleries consisted of
the same people taken on the same day with the neutral expression (one
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gallery image is missing for one person). The difference among the gal-
leries was the lighting: mugshot, FERET-style and overhead fluorescent.
The gallery sizes were 227, 227 and 226, respectively. The time difference
between the acquisitions of the gallery and probe images of a person was 11
to 13 months. Performance results are presented in Figure 7.6. For Lau
Technologies and Visionics, the performance on the mugshot and FERET
style galleries are the virtually the same. For these two vendors, there is a
drop in performance for the overhead lighting gallery.

The last major category of probes investigated in the FERET evaluation
was the effect of illumination changes on performance. In FERET nomen-
clature, these was the fc (ambient lighting) probes. In FRVT 2000, there
were two types of illumination. The first type was indoor images taken with
overhead ambient light from fluorescent lights, which are referred to as fc-
indoor probes. The second type were images taken outdoors, which are
referred to as fc-outdoor probes. The gallery consisted of images taken
indoors under mugshot lighting conditions. All images of a person were
taken on the same day within 30 minutes. The images were digital and the
neutral expression (fa) images were used. The gallery consisted of 227 indi-
viduals with one image per person. There were 189 fc-indoor probes and
190 fc-outdoor probes. The results for the illumination experiments are
presented in Figure 7.7. Compared to the same-day (fa and fb) probe sets in
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Figure 7.4, there is a small drop in performance for the fc-indoor probes.
Compared to the fc-indoor probe set, there is a significant drop in perfor-
mance for the fc-outdoor probe set. The results show a significant drop in
performance for all systems for the fc-outdoor probes, and variable drop in
performance for the fc-indoor probes.

The majority of face recognition systems are designed to work on frontal
facial images. However, the ability to recognize faces from non-frontal
poses is important in numerous applications. The effect of pose variation
on performance was measured in the August 1994 FERET evaluation, but
was not examined in the subsequent FERET evaluations. FRVT 2000 revis-
ited the effects of pose variations. For this experiment, the gallery consisted
of 200 frontal images (one image per person) from the FERET database.
Performance scores are reported for four probe sets, where the images in
each probe set consisted of images at the same angle off frontal. The four
angles were ±15°, ±25°, ±40° and ±60°. The rotations result from moving the
head right or left in the image plane, with 0° being the frontal image and
±90° being the left and right profile images. The size of each probe set is 400,
with two images per person. One image was taken to the right and one to
the left at the specified angle. Figure 7.8 shows the results for the system
with the best performance results. The results show that performance was
not seriously affected for pose angles up to 25°. At 40° performance starts to
drop sharply.

In addition to repeating variations on FERET experiments, FRVT 2000
investigated the effects on performance of compression, comparing images
taken on 35 mm film and digitally, and the effects of resolution of perfor-
mance. These categories address system design factors and their effect on
vendor performance had not been previously examined.

Compression is of interest because, during transmission or storage,
facial images could be compressed. In this experiment, we model the effects
on performance of compression on the transmission of the probes. Perfor-
mance was computed for five levels of JPEG compression: 1:1 (no compres-
sion), 10:1, 20:1, 30:1 and 40:1. JPEG compression was selected because it is
the de facto standard compression technique. A probe set was generated for
each compression rate by compressing the probes in the September 1996
FERET Dup I probe set. The gallery consisted of the standard September
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1996 FERET gallery. The gallery images were not compressed. Figure 7.9
shows results for the algorithm with the best performance. The results
show that performance does not deteriorate for compression levels
through 30:1.

In FERET and most other face databases used in research, all of the images
are collected on the same medium (the medium is the type of material used
to record an image). In FRVT 2000, the medium was either 35 mm film or dig-
ital electronic storage. In most real-world applications, images will be col-
lected on different media. To examine the effect of shaping media, FRVT 2000
performed two experiments. In both experiments, all images of the same
person were taken within a few tenths of a second with the same expression
and mugshot lighting. In the first experiment, the gallery consists of 96 indi-
viduals taken with 35 mm film, and the probe set consisted of 102 probes
taken with a digital camera. In the second experiment, the gallery consisted
of digital images of 227 individuals, and the probe set consisted of 99 probes
taken with 35 mm film. Results for both experiments are shown in Figure
7.10. The results show that for Lau Technologies and Visionics changing the
medium does not significantly affect performance.

One of the critical parameters in designing a system is the number of
pixels on a face, or resolution of a face, required to achieve a set perfor-
mance level. FRVT 2000 ran four experiments to measure the affect of facial
resolution on performance. In face recognition, the inter-ocular distance,
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the number pixels between the centers of the eyes, measures the resolution
of a face.

For all resolution experiments, the gallery was the same and consisted of
101 fa digital images collected with mugshot lighting (with one image per
person in the gallery). The gallery images were not rescaled. The gallery
images had a mean eye separation of 138.7 pixels with a range of 88–163
pixels. Four probe sets were generated from the corresponding fb image of
the fa images in the gallery. The four probe sets were generated by digitally
rescaling the fb images to specified inter-ocular distances. The specified
inter-ocular distances were 60, 45, 30 and 15 pixels. All probes in a probe set
had the same inter-ocular distance. All probe sets had 102 images (one
person had two fb images). The results are shown in Figure 7.11. In most
cases, performance did not drop significantly throughout the tested range
of resolution reduction and, for some vendors, performance increased
slightly as resolution was reduced. In fact, for all vendors, performance did
not decrease when the inter-ocular distance was decreased from 60 to 45
pixels.

7.2.5 Conclusions Drawn from the FERET Evaluations and FRVT 2000

Comparison of the results from the FERET evaluation and FRVT 2000
shows clear progress in automatic face recognition technology develop-
ment from 1993 through 2000. This progress was measured from the estab-
lishment of the first benchmark performance of face recognition in 1994
(FERET) to measuring performance of COTS systems in 2000 (FRVT 2000).
The FERET evaluations and FRVT 2000 both played a critical role in mea-
suring technological advancement and propelling actual technological
improvements.

The four evaluations discussed in this chapter clearly identify future
research directions, with those directions being consistent across all four
evaluations. All the results and experiments in the FERET evaluations and
FRVT 2000 fall into four groups, with each group corresponding to a gen-
eral face recognition problem. The first group consists of experiments
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where the gallery and probe images were taken indoors and on the same
day. This includes fb probes (same lighting, different expression) and fc
probes (different lighting), and resolution and media experiments. The
second group consists of experiments where the gallery image is taken
indoors with the probe image taken outdoors. In the FRVT 2000, the gallery
and probe images were taken on the same day for this group of experi-
ments. The third group consists of experiments where the gallery and
probe images are taken on separate days. This includes the FERET Dup I
and Dup II categories and temporal variations in FRVT 2000. The fourth
group consists of pose variations where gallery and probe images are taken
at different poses.

The first group (same day, indoors) represents the easiest category. For
all experiments presented in this chapter, identification scores above 80%
occurred only for experiments in this category. (Note: not all experiments
in this category had scores above 80%. Also, in the pose experiment, the
near frontal images taken on the same day had identification rates above
80%.) For FRVT 2000, the best performer for each experiment in this cate-
gory had an identification rate above 90%. In FRVT 2000, performance on
the fb probe category was 96% for Visionics, which represents an empirical
upper bound on performance at the time of FRVT 2000.

The performance in the other three groups is characterized by identifica-
tion rates well below 80%. Each of the groups corresponds to a research
direction and problem area in face recognition. The second group defines
the problem of recognizing faces under temporal variations. This problem
has been a classic problem in face recognition and remains an active and
important area of research. The vast majority of real-world applications
require recognition from images taken on different days. The FERET pro-
gram and duplicate images set in the FERET database have encouraged
research on temporal variations.

The third group of results identify that pose variation is a research area.
The August 1994 FERET and FRVT 2000 evaluations measured perfor-
mance in this area. However, there has not been a strong research emphasis
in this area. This lack of emphasis may be attributed to initial research con-
centrating on frontal face recognition versus recognition with pose varia-
tion. The availability of the Carnegie Mellon University (CMU) pose,
illumination and expression (PIE) database has contributed to renewed
interest in this problem2 [51].

The last research area in face recognition is recognition of faces in out-
door imagery. This is a problem that had not previously received much
attention, but is increasingly important. The greatest challenge in recogni-
tion using outdoor imagery is handling illumination variability due to sun-
light and the diurnal cycle.

Three of the four groups define interesting areas that need further
research. This is from both the technical and application points of view.
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However, the “same day, different expression” group does not represent an
interesting research area. There are very few, if any, applications where the
only difference between gallery and probe images is an expression change.
From an algorithmic point of view, to show significant technical progress is
this area a much larger database of faces is needed. A larger database of
imagery would reduce the identification rate and allow room for improve-
ment to be demonstrated.

FRVT 2000 examined the effects of compression, media changes, and res-
olution on performance. These issues are important for applications, and
their effect on performance needs to be taken into consideration when
designing systems. FRVT 2000 showed that for the systems tested, media
changes do not affect performance, reasonable compression rates do not
affect performance, and resolution above 15 pixels does not affect perfor-
mance. One interesting observation is that in some cases, compression or a
reduction in resolution can increase performance. This improvement in
performance most likely occurs because compression and resolution
reduction act as bandpass filters [37]. As automatic face recognition con-
tinues to advance, it will be necessary to revisit the effects that media
changes, compression and resolution have on performance.

FRVT 2000 documented the progress in performance made since the last
FERET evaluation. There was improvement in performance on the Dup I
and Dup II probe categories. For the best algorithms, performance
increased from 0.59 to 0.63 for Dup I and 0.52 to 0.64 for Dup II.

Equally importantly, the FRVT 2000 marks a significant maturing point
in automatic face recognition technology. The systems evaluated in FRVT
2000 were all commercial off the shelf systems (COTS) and were required to
automatically process 27,744 images and perform 192 million matches in
72 hours. A mere three years after FERET evaluated prototype systems in
academia, COTS system were completing evaluations harder than the any
of the FERET evaluations. It is significant to note that this occurred only
seven years after the start of the FERET program. Progress in face recogni-
tion has continued since FRVT 2000. The next significant face recognition
evaluation is the Face Recognition Vendor Test 2002, which was being orga-
nized at the time this chapter was written3.

7.3 Meta-Analysis

Independent evaluations are one method of assessing advancement. To
get to the point where an algorithm or system is mature enough to partici-
pate in an evaluation requires considerable research, engineering and soft-
ware development. Results from initial research are usually published in
the academic literature. Thus, advances in face recognition require that
research concentrate on problems that need to be solved, with independent
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evaluation being very good at identifying these problems. For new tech-
niques, it is necessary to identify which new approaches are potential
breakthroughs and which are not. One method of determining whether
researchers are concentrating on interesting problems and making prog-
ress on these problems is meta-analysis.

7.3.1 Introduction to Meta-Analysis

Meta-analysis is a quantitative method for analyzing the results from mul-
tiple papers on the same subject [28, 29]. Meta-analysis can be performed
to consolidate a group of experimental results or to gain deeper insight into
methodological techniques in a field. Meta-analysis has been used exten-
sively in medicine, psychology and the social sciences.

One type of meta-analysis is a statistical analysis of results from multiple
papers on a subject from different research groups. The goal is to take the
results of a number of possibly contradictory or inconclusive studies and
discover what may be collectively said about a given field. This analysis can
provide conclusive results from a series of inconclusive studies or spot
trends that cannot be detected from a single experiment. Examples of this
are the efficaciousness of Taxol for breast cancer [29], the effectiveness of
bilingual education [30] and an assessment of human identification
studies in psychology [31].

The key feature of meta-analysis is that it requires results from multiple
papers from different groups. This is different from independent evalua-
tions such as FRVT 2000 or FERET. In evaluations, the performance of a set
of algorithms is measured on the same images and at the same time. The
results are reported in a single paper. Our meta-analysis examines perfor-
mance through analysis of 24 papers on face recognition. In fact, by looking
at performance across multiple evaluations one could perform a meta-
analysis on face recognition evaluations.

A second type of meta-analysis examines a field to identify potential
methodological problems. Each field has its established conventions for
conducting and reporting research results. It is possible that the estab-
lished conventions will have adverse effects on the field or skew results. In
this chapter, we examine the current methods for conducting and reporting
results for automatic face recognition algorithms.

In the medicine, the placebo effect is an accepted phenomenon in clinical
experiments. However, a recent meta-analysis by Hróbjartsson and
Gøtzsche [39] has brought into question this long-accepted idea. In clinical
trials, the accepted rule of thumb has been that placebos can improve a
wide range of conditions in up to 30–40% of “treated” patients. In this
meta-analysis, the authors reexamined clinical trials where patients were
randomly assigned either to a no-treatment or to a placebo group. The
reexamination found no significant differences in outcomes between the
no-treatment and placebo groups.

Two classic studies from medicine further illustrate this category of
meta-analysis. The first is the study by Hedges [32] that showed a bias
in meta-analyses in medicine because of their tendency to not include
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unpublished studies. Published studies tend to show greater effectiveness
of a new drug or medical regime than unpublished studies. Thus, meta-
analyses that excluded unpublished studies would be biased towards
showing greater effectiveness of a new drug or regime.

The second is the study by Colditz et al. [33] that showed a bias in results
from non-randomized experiments in medicine. In a prototypical experi-
ment, a test subject is assigned either to an experimental regime or to a control
regime. In a randomized test, subjects are randomly placed in either a treat-
ment (experimental) group or a control group. Colditz et al. showed that non-
randomized studies report a higher success rate than randomized studies.

Like the two previous examples, our analysis addresses experimental
methodological issues and conventions for face recognition algorithms. By
performing a meta-analysis, not only can we quantitatively investigate the
validity of the reported results, we can also report on the underlying causes
and recommend possible solutions.

While the face recognition community has discussed some of the results
of this analysis at the philosophical level, none have been studied quantita-
tively. There is a quip in the face recognition community that researchers
always report algorithm performance of 95% and higher (correct identifi-
cation). At the same time, the FERET evaluations FRVT 2000 show such
performance for only one case: images taken on the same day under the
same lighting conditions.

We will address the importance of choosing the correct evaluation meth-
odology for conducting experiments; the role of a baseline (or control)
algorithm in experiments; and the need to document experimental param-
eters, design decisions, and performance results.

Automatic face recognition is amenable to meta-analysis for a number of
reasons. The first is that this has been a very active area of research for the
last decade, so there is a sizable amount of accumulated work in the area.
Second, there exists an accepted quantitative performance measure – prob-
ability of identification. Third, there exist databases of facial images that
are available to researchers and are used to report results in the literature.
Fourth, there exist independent measures of performance – the FERET
evaluations for example. Fifth, there exists an accepted baseline algorithm
that is easily implemented – principal component analysis (PCA)-based
algorithms (also known as eigenfaces) [34].

7.3.2 Methodology for Selecting Papers

We selected papers for this study that ran experiments using either the
FERET or the AT&T Laboratories-Cambridge (ORL) databases and
reported identification performance results for full frontal facial images.
The FERET and ORL databases were selected because they are extensively
used in the face recognition community4 [43].
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We searched major computer vision and face recognition conference
proceedings, journals, edited books and the IEEE Xplore journal and con-
ference archive. This produced 47 papers. We then removed papers that had
similar experimental results from the same research group. The similar
results occurred because preliminary papers appeared in conferences and
the final version appeared in a journal. With one exception, the journal ver-
sion was selected. The winnowing process produced 24 papers for further
analysis. A list of these papers is in the reference section [4–27].

Each paper selected presented a new face recognition algorithm, which
we will refer to as an experimental algorithm. The effectiveness of an
experimental algorithm is demonstrated by performing experiments on
one or more data sets. In addition, some authors report results for more
than one variation on the experimental algorithm. If the authors reported
performance for a number of variations for an algorithm, we choose the
variation with the best overall performance. A number of papers reported
performance scores for additional algorithms that served as baselines. If
there was only one baseline algorithm, we refer to this as the baseline algo-
rithm for the experiment. In this case, the baseline algorithm was usually a
correlation- or PCA-based face recognition algorithm. If there were mul-
tiple baseline algorithms, we selected the variation of a PCA-based algo-
rithm with the best performance as the baseline algorithm.

The 24 papers selected yielded 68 performance scores. The 68 scores
include multiple experiments in a paper and baseline algorithms. This
analysis was performed on the identification error rate, which is one minus
the rank one identification rate. A more detailed analysis can be found in
Phillips and Newton [39].

We consolidated the results of three sets of papers. The first set of consol-
idated papers reported results on the ORL database using the same basic
evaluation protocol [8–10, 14, 19, 22, 23]. Two of these papers also reported
results on the FERET database [10, 23]. The second set were two papers by
Moghaddam and Pentland [15, 16] that used the same image sets. The third
set consisted of three papers by Liu and Wechsler [11–13] that used the
same image sets.

7.3.3 Analysis of Performance Scores – Viewing the Data Through
Histograms

We examine the first question, “Are researchers working on interesting
problems?”, through histograms. Histograms summarize the distribution
of performance scores (error rates in the meta-analysis) and allow peaks in
the distribution to be easily identified. If the peaks are concentrated with
low error rates, then this is evidence that researchers are concentrating on
an easy problem that is not interesting. If the peaks are concentrated other
places, then researchers are concentrating on hard problems.

We first looked at the distribution of the identification error rates across
all experiments and algorithms (experimental and baseline algorithms).
Traditionally, researchers have reported identification rate, in other
words their success in recognizing faces. In the meta-analysis, we choose to
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characterize performance by the identification error. The error rate is the
percentage of probes that are not correctly identified, which is one minus
the top-match identification rate. Figure 7.12 is a histogram of the error
rate distribution for algorithms. For the 68 performance scores included in
this meta-analysis, 56% (38 out of 68) have an error rate below 0.10.

Next we restricted our attention to the experimental and baseline algo-
rithms according to the exclusion criteria described at the end of the pre-
vious section. This yielded 40 experimental algorithms, 33 of which have
corresponding baseline algorithms. There are fewer baseline algorithms
because seven studies did not use a baseline. Some baseline algorithms cor-
respond to more than one experimental algorithm (e.g. the ORL series has
one baseline algorithm for 10 experimental algorithms).

Figure 7.13 shows a histogram of error rates for experimental algorithms
in black and baseline algorithms in white. To illustrate the influence of a
baseline score, we counted them each time a score served as a baseline (for a
total of 33 baselines). For example, for the ORL experiments, we counted
the baseline algorithm 10 times. Figure 7.13 shows that 29 of the 40 (73%)
experimental algorithms report error rates of 0.10 or less.

We examined the seven experimental algorithms that do not have a base-
line score. The error rates for these algorithms are: 0.008, 0.01, 0.02, 0.034,
0.045, 0.046 and 0.28. Their median is 0.034. These scores (1) show that 6 out
of 7 experiments have an error rate less than 0.05, (2) contain the best error
rate (0.008) for all 40 experimental algorithms in this analysis, and (3)
account for one third of the experimental algorithms with error rates below
0.05. Clearly, the results from experimental algorithms without a sup-
porting baseline algorithm are highly biased.

Seven papers report experimental results on the ORL database [8–10, 14,
19, 22, 23]. This produced 11 performance scores: 10 experimental and 1
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baseline. The PCA algorithm in Lawrence et al. [8] was the baseline algo-
rithm for the ORL experiments. The baseline error rate is 0.105. The error
rate range for the experimental algorithms is between 0.029 and 0.13, with 7
out of 10 performance scores equal to or less than 0.05. This indicates that
performance has been saturated using this data set, and the data set does
not define a sufficiently challenging problem for automatic face recogni-
tion. In the ORL database, all the pictures of a person are taken on the same
day. Thus, experiments on the ORL database are equivalent to fb (same day,
same lighting) experiments on FERET data. Our conclusions on the diffi-
culty of the ORL database are consistent with our findings for fb experi-
ments on FERET data: it no longer represents an interesting problem.

7.3.4 Evaluation of Experiments with a Baseline

We next look at the second question: “Is progress being made on inter-
esting face recognition problems?”. Ideally this would be accomplished by
directly comparing performance of the experimental algorithms. This
would require that all the algorithms report performance on the same data
sets. Unfortunately, this is not possible. Therefore, to compare performance
we have to use indirect methods. This restricts our analysis to experimental
algorithms that also report performance for a baseline algorithm. To indi-
rectly compare algorithms, we measure the relationship between the per-
formance scores of the experimental and baseline algorithms on the same
experiments.

We assess progress by examining the relationship between experimental
and baseline performance scores. A scatter plot is commonly used to show
this relationship. Figure 7.14 is a scatter plot of the 33 experimental scores
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that had corresponding baseline scores. Each point in the scatter plot is an
experiment. The x-axis is the baseline score, and the y-axis is the corre-
sponding experimental score. A best-fit line for the data is shown in Figure
7.14 as well. If the points are close to the best-fit line, then there is a correla-
tion between the experimental and baseline scores. In other words, the
baseline scores are predictive of the experimental scores. To formalize the
analysis of this relationship, we computed the correlation coefficient value
r for the 33 pairs of scores. If the experimental and baseline scores were per-
fectly correlated, then the r-values would be 1.0. The observed correlation
value r is 0.932 with a significance level greater than 0.01. This shows strong
correlation between the 33 pairs of baseline and experimental scores.

Next we divided the pairs of scores into two groups and examined the
relationship between experimental and baseline scores for pairs with base-
line scores above 0.20 and below 0.20. Figure 7.15 is a scatter plot of the nine
experimental algorithms with baseline scores above 0.20. The correlation
coefficient r is 0.953, which has a significance level greater than 0.01. This
shows that the baseline scores are predictive of the experimental error rates
when the baseline scores are greater than 0.20. In fact, the performance
scores of experimental algorithms can be predicted from the baseline per-
formance scores. This implies that all the algorithms are making the same
incremental increase in performance over the baseline algorithm.

The correlation coefficient for algorithms with baseline scores less than
0.20 was 0.283. A correlation value of 0.283 is not significant and shows that
the experimental and baseline scores are not correlated. There are two
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possible explanations for the scores not being correlated: first, that perfor-
mance is saturated for low error rates with PCA-based algorithms; or
second, that PCA-based algorithms are not appropriate baseline algo-
rithms for low error experiments. The results of the scatter plot analysis are
summarized in Table 7.3.

7.3.5 Meta-Analysis Conclusions

The meta-analysis discussed in this section looked at two questions: are
researchers concentrating on interesting problems in face recognition, and
is progress being made on interesting problems?
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Figure 7.15 Scatter plot for experimental and baseline scores with a baseline error rate > 0.20.
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All algorithms
with a
baseline

Algorithms with
baseline error
rates >0.20

Algorithms with
baseline error
rates <0.20

Figure No.

No. of
experimental
algorithms

33 9 24 14

Correlation
value r

0.932 0.953 0.283 15

Level of
significance

<0.01 <0.01 Not significant N/A

Table 7.3 Summary of results from Figures 7.14 and 7.15.



For the first question, this meta-analysis identifies that the majority of
papers in scientific literature concentrated on developing face recognition
algorithms to solve problems that are not interesting. These problems are
characterized by images being taken on the same day under the same
lighting conditions. This problem does not model a real-world application
and only provides an upper bound on algorithm performance. Results on
experiments that model this problem are a first step in demonstrating the
capabilities of an algorithm. In addition to including results on this easy
problem, papers need to include experimental results on harder problems.
Experimental results on harder problems will give the face recognition
community a chance to properly assess whether a new algorithm repre-
sents an improvement over existing approaches.

When designing experiments on images collected on the same day with
the same light (an easy problem), existing results must be taken into con-
sideration. On the equivalent FRVT 2000 results, fb probe sets, the best
COTS system obtained an identification rate 0.96 (error rate of 0.04) on a
gallery of 225 people. Since these results are on COTS systems, researchers
would need to demonstrate that an experimental algorithm performs con-
siderably better than available COTS systems.

There are many researchers who are working on interesting problems. In
the papers studied in this meta-analysis, an interesting problem is charac-
terized by images of a person taken indoors on different days. However, is
significant progress being made on this problem? The answer from this
meta-analysis is no. Meta-analysis results show that baseline and experi-
mental algorithm scores are correlated and that all algorithms are making
the same incremental improvement over the baseline. This strong correla-
tion raises three questions for future investigations. First, why is the
improvement in performance of experimental algorithms only incre-
mental over the experimental scores? Second, could one detect break-
throughs in face recognition through performance of an experimental
algorithm that is not predicted by a baseline score? Third, because of the
strong correlation, are all the algorithms using essentially the same
information to perform recognition?

The answers to the two questions studied in the meta-analysis suggest
that a new methodology for conducting and reporting experiments needs
to be adopted by the face recognition community. To foster discussion on a
new experimental methodology we make the following recommendations:

� The face recognition community should establish an algorithm imple-
mentation as a baseline.

� The face recognition community should establish a set of standard chal-
lenge problems.

� Published papers should report results on appropriate challenging prob-
lems and, for new data sets, provide new performance baseline results.

A common baseline will allow for the difficulty of data sets and problems
to be calibrated. In addition, it will allow for indirect comparison among
algorithms. The establishment of a set of challenge problems will allow for
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the direct comparison among algorithms and a measure of progress. As
progress is made in face recognition, the baseline and challenge problems
will need to be updated to adjust for improvements and progress in face
recognition technology. One possible source of baseline implementations
is the baseline suite from Colorado State University [55].

Publishing the performance results of experimental algorithms on chal-
lenging problems will fix a base level of performance. Some experimental
algorithms will be designed to address new problems that are not part of
the standard set of challenge problems. Reporting baseline performance on
new problems will provide a measure of difficulty for the new problem.
Also, reporting the performance of experimental algorithms on standard
challenge problems will provide a comparison point with existing algo-
rithms. Providing performance on both the new problem and standard
challenge problems will allow for robust comparisons with other methods.

Scientific fields advance by conducting research on hard and interesting
problems. The FERET evaluations and FRVT 2000 have identified three
hard problems that have real-world applications: temporal changes
between gallery and probe images, pose variations, and recognition from
outdoor imagery. By following our recommendations, it will enable the face
recognition community to make quantifiable progress while simulta-
neously working on problems that are relevant to the real-world
applications.

7.4 Conclusion

Measuring progress in face recognition, as with any biometric, is a multi-
dimensional process. More than one technique is required for measuring
progress. In this chapter we have discussed two methods: independent
technology evaluations and meta-analysis.

The conclusions from the FERET and FRVT 2000 evaluations and the
meta-analysis appear to be contradictory. The independent evaluations
show progress, whereas the meta-analysis suggests that progress is not
being made. This contradiction can be explained by the manner in which
expectations are established and progress is measured in evaluations and
in scientific papers. In scientific papers, it is not possible to directly com-
pare performance among algorithms, whereas in evaluations, the partici-
pants know that their performance will be measured against others. This
encourages participants to develop new techniques and algorithms with
demonstrably better performance than those of rival research groups. This
was nicely demonstrated in the September 1996 FERET evaluations. Two
groups, Massachusetts Institute of Technology (MIT) and the University of
Maryland (UMD), each submitted two algorithms. The MIT group sub-
mitted the algorithm from the March 1995 evaluation and a new algorithm
designed for the September 1996 evaluation. UMD took the September
1996 evaluation twice: in September 1996 and March 1997. For both groups,
there was a substantial increase in performance between the first and
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second algorithms. The improvement was stimulated by their participation
in the evaluations.

In the academic literature, improvement is generally measured by
showing an increase in performance over a baseline algorithm. Comparing
the performance of an experimental algorithm with a baseline algorithm
allows for an indirect comparison of algorithms. What is needed is a mech-
anism to directly compare performance across experimental algorithms.
This can be accomplished by following our recommendations of estab-
lishing standard challenge problems and standard baseline algorithms for
calibrating the difficulty of a challenge problem. If the face recognition
community accepted the standard challenge problems and baseline algo-
rithm, this would change the expectations for performance needed to pub-
lish a paper and provide a common yardstick for measuring progress.

Methods for measuring and assessing performance are critical elements
in advancing automatic face recognition technology. The FERET evalua-
tions and FRVT 2000 have a proven track record of advancing face recogni-
tion technology. Helping to guide and nurture automatic face recognition
technology from its infancy to mature commercially available systems. The
next step in face recognition technology evaluations is the FRVT 2002,
which will evaluate the performance of systems on a data set of 121,000
images. Complementing the maturing of technology evaluations is the
development of techniques and methods for performing scenario and
operational evaluations [52, 53]. The methods discussed in this chapter are
also applicable to other areas of biometrics, and have the potential to assist
in advancing all areas of biometrics.
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8The NIST speaker recognition
evaluation program

Alvin Martin, Mark Przybocki and Joseph P. Campbell, Jr1

8.1 Introduction

The National Institute of Standards and Technology (NIST) has coordi-
nated annual scientific evaluations of text-independent speaker recogni-
tion since 1996. These evaluations aim to provide important contributions
to the direction of research efforts and the calibration of technical capabili-
ties. They are intended to be of interest to all researchers working on the
general problem of text-independent speaker recognition. To this end, the
evaluations are designed to be simple, fully supported, accessible and
focused on core technology issues.

The evaluations have focused primarily on speaker detection in the con-
text of conversational telephone speech. More recent evaluations have also
included related tasks, such as speaker segmentation, and have used data in
addition to conversational telephone speech. The evaluations are designed
to foster research progress, with the objectives of:

1. Exploring promising new ideas in speaker recognition
2. Developing advanced technology incorporating these ideas
3. Measuring the performance of this technology

The 2002 evaluation included 25 participating sites, by far the largest
number to date. Evaluation participants included commercial, academic
and governmental research laboratories. The nations represented included
Australia, China, France, India, Israel, South Africa, Greece, Spain, Sweden
and the USA. As in the past several evaluations, the ELISA Consortium (a
group of European laboratories [8, 11]) participated collaboratively and
also with individual submissions from each laboratory.

Information on the more recent NIST speaker recognition evaluations,
including their official evaluation plans, is available on the NIST Speaker

241

1 This work is sponsored by the Department of Defense under Air Force Contract
F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations
are those of the author and are not necessarily endorsed by the United States
Government.



Recognition website [1]. Evaluation data kits used in past evaluations are
available as publications of the Linguistic Data Consortium [2].

A scientific evaluation paradigm is used for each NIST evaluation. A blind
evaluation is conducted in which the participants do not know the speaker
identities in advance. An evaluation begins with each participant registering
with NIST and acquiring development and evaluation data as defined in the
NIST evaluation plan for that year. The participants run their systems on the
development data, for which speaker identities are given, to develop their
algorithms, set thresholds, etc. Then the participants are given a limited time
period (typically four weeks) to run their systems on the blind evaluation
data and submit scores to NIST. NIST then evaluates the scores of the partici-
pants’ systems and releases the answer key. Participants are encouraged to
perform post-evaluation analysis using the answer key in preparation for the
workshop. A workshop is held where NIST presents results of the various
participants’ systems and results on poolings of the data that are of interest
to the community. The participants are required to present the details of
their systems at the workshop and to submit system descriptions. Any sub-
missions after the answer key is released are considered late and unofficial.
Once the data and its corresponding answer key have been released, it is con-
sidered exposed and its use in future evaluations is carefully controlled (e.g.
it becomes development data in subsequent evaluations). As defined in the
evaluation plan [1], each of the evaluation tasks has its own rules and restric-
tions, but the following ones are in common:

� Listening to evaluation data is not allowed.
� Each decision is to be made independently:

– based on the specified test segment and speaker model
– use of other test segments or other models is not allowed

� Normalization over multiple test segments is not allowed.
� Normalization over multiple target speakers is not allowed.
� Use of evaluation data for impostor modeling is not allowed.
� Use of manually produced transcripts or other information for training

is not allowed, except when allowed under the extended data evaluation.
� Knowledge of the target speaker’s sex is allowed and the segment

speaker’s sex is known to be that of the target in non-cross-sex trials.

Other biometric evaluations are adopting similar scientific paradigms and
guidelines appropriately adapted to the biometric under evaluation, as
described elsewhere in this book.

8.2 NIST Speaker Recognition Evaluation Tasks

We describe in this section the four types of task that have been included in
some of the NIST annual evaluations. Of these four tasks, it is the one-
speaker detection task that has been a part of each evaluation and is the one
most central to biometric identification [16] using speech.
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The two most recent evaluations have each introduced a variant of the
one-speaker detection task. The 2001 and 2002 evaluations included an
extended data one-speaker detection task, which uses much larger
amounts of data for speaker training and much longer speech data seg-
ments for testing. Transcripts generated by an automatic speech recogni-
tion (ASR) system were provided for all of the data. The 2002 evaluation
included a multimodal test using a Federal Bureau of Investigation (FBI)
corpus of forensic-type data. This FBI corpus included data from two types
of microphone as well as telephone data. These tests have had some impres-
sive results and are discussed in Sections 8.7 and 8.8.

8.2.1 One-Speaker Detection

This is the basic speaker recognition task that has been part of all the NIST
evaluations. The task is to determine whether a specified speaker is
speaking in a given single-channel segment of mu-law encoded telephone
speech. The hypothesized speakers are always of the same sex as the seg-
ment speaker.

The task each year consists of a sequence of trials; the main one-speaker
test in 2002 had about 39,000 trials. A trial consisted of a single hypothe-
sized speaker and a specific test segment. The system is required to make
an actual (true or false) decision on whether the specified speaker is
present in the test segment. Along with each actual decision, systems are
also required to provide for each trial a likelihood score indicating the
degree of confidence in the decision. Higher scores indicate greater confi-
dence in the presence of the speaker. A trial where the hypothesized
speaker is present in the test segment (correct answer true) is referred to as
a target trial. Other trials (correct answer false) are referred to as impostor
trials.

8.2.2 Two-Speaker Detection

This task is the same as the one-speaker detection task, except that the
speech segments include both sides of a telephone call with two speakers
present and the channels summed. Unlike the one-speaker detection task
where each training and test segment is limited to a single speaker, here
systems must deal with the confounding presence of a second speaker. Note
that the task is to determine whether the one specified speaker is present in
the combined signal. The segment speakers may be of the same or opposite
sex, but the hypothesized speaker is always of the same sex as at least one of
the segment speakers.

8.2.3 Speaker Tracking

This task is to perform speaker detection as a function of time. The
tracking task uses summed channel segments, as in the two-speaker detec-
tion task. Systems are required to identify the time intervals (if any)
when the hypothesized speaker is speaking. This task may be viewed as a

Chapter 8 · The NIST speaker recognition evaluation program 243



generalization of the two-speaker detection task. Note that the single target
speaker is known, with training data provided.

8.2.4 Speaker Segmentation

This task requires systems to find the intervals within a speech segment
corresponding to different unknown speakers. Thus, this task requires
clustering speech according to (unknown) speaker identities; in general
the number of speakers present is also unknown. The two-speaker detec-
tion task may be approached as having this task as a front end, with the
number of unknown speakers being two, followed by the one-speaker
detection task applied to each of the two clusters.

8.3 Data

The primary data source for the NIST evaluations has been the Switch-
board Corpora of conversational telephone speech collected over the last
decade by the Linguistic Data Consortium [2]. These all involve 5- to 10-
minute conversations between two speakers. A participant calls into an
automated operator that connects him or her to another participant and
records their conversation as separate sides. The speakers, who generally
do not know each other, are paired and assigned a conversational topic by
an automatic system. Speaker pairs are never repeated and the assigned
topic is never repeated for either speaker. The speakers are recruited adults,
frequently college students, approximately half male and half female, who
are generally paid nominal fees for their participation. They sometimes do
not stick to the assigned topic. Multiple sessions (up to 25) per speaker at
least 1 day (up to weeks) apart are recorded using various telephone hand-
sets over the public telephone network [23]. Table 8.1 describes the
multiple parts of the Switchboard (SWBD) Corpora.

244 Biometric Systems

SWBD I SWBD II
Phase 1

SWBD II
Phase 2

SWBD II
Phase 3

SWBD
Cellular 1

SWBD
Cellular 2

Number of
conversations

4870 3702 4575 2728 1309 2020

Number of
speakers

543 661 684 640 254 419

Predominant
speakers

Adults College
students

College
students

College
students

Adults Adults

Data style On topic College
chit-chat

College
chit-chat

College
chit-chat

Topic/
chit-chat

Topic/
chit-chat

Collection
dates

1990 1997–
1998

1998–
1999

1999–
2000

1999–
2000

2000–
2001

Targeted
location

USA Mid-
Atlantic

Mid-West South East coast East coast

Table 8.1 The Switchboard Corpora: all two-channel mu-law data.



We discuss below how speaker training data and test segments have been
selected from the Switchboard Corpora to be used in the NIST evaluations
for the one-speaker detection task.

8.3.1 Speaker Training

Training data is provided for the hypothesized speakers of all trials. Such
speakers are referred to as model speakers. The source of the training data
has varied over the course of the evaluations, but the amount of training
data has typically been about two minutes. Early evaluations were designed
to look more closely at how the source of training data affected perfor-
mance. Three types of training data were provided:

1. One session: two minutes of data taken from a single conversation.
2. Two session: one minute of data taken from each of two conversations

where the same telephone handset was used for each.
3. Two handset: one minute of data taken from each of two conversations

where different telephone handsets were used for each.

These early evaluations revealed that a large performance gain was
achieved as the training data became more varied (two handset training
was best). A later evaluation showed, not surprisingly, that longer training
segments improved system performance, but this was a smaller improve-
ment than two handset training. More recent evaluations have used one-
session training. Table 8.2 offers information about the training data pro-
vided in each of the annual evaluations.

In all of the evaluations, the training data has consisted of consecutive
turns of the speaker with areas of silence removed, generally selected from
near the end of the conversation. (The end is perhaps a better, more conver-
sational, choice than the beginning, which may contain more formal intro-
ductions.) The actual durations of the training segments are allowed to
vary within a 10 second range so as to include only whole turns wherever
possible.

8.3.2 Test Segments

In earlier evaluations, test segments were chosen to have fixed durations of
approximately 3, 10 or 30 seconds. As might be expected, performance
improved with longer duration segments. Table 8.2 summarizes the dura-
tions of the test segments over the course of the evaluations.

In the recent evaluations, the one-speaker test segments have had
varying durations ranging up to a minute and averaging about 30 seconds.
They have been selected by choosing a minute of conversation and concate-
nating the turns of each speaker within that minute into two separate test
segments, one per channel. As with the training segments, areas of silence
are removed and whole turns included to the extent possible. No more than
one test segment is created from each conversation side, and no test
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segments come from conversations where training data is selected from
either side.

In general, each test segment is used in 11 trials, one of which is a target
trial with the segment speaker being the model speaker. The other 10 model
speakers are randomly selected from among all model speakers of the same
sex as the segment speaker. As discussed in the next section on measuring
performance, this 10 to 1 ratio of impostor to target trials is not intended to
reflect what is likely in an actual application environment.
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Year Primary condition Target speakers/target
trials

Evaluation features

1996 Not defined 40/3999 Tests of 3 durations, 3
training conditions
Switchboard-1 data

1997 Train/test using different
handsets
30 second durations
Two handset training

~400/3050 Tests of 3 durations, 3
training conditions
Switchboard-2 Phase 1
data

1998 Train/test using same
handset
30 second durations
Two session training

~500/2687 Tests of 3 durations, 3
training conditions
Switchboard-2 Phase 2
data
Handset type detector
information made
available

1999 Train/test using different
electret handsets
Test durations 15–45
seconds
Two session training

233/479 Added multispeaker
tasks
Variable durations used
in main test trials
Switchboard-2 Phase 3
data

2000 Train/test using different
electret handsets
Test durations 15–45
seconds
One session training

804/4209 Resegmented 1997,
1998 test data for reuse
Extra test on AHUMADA
Spanish data

2001 Train/test using different
electret handsets
Test durations 15–45
seconds
One session training

804/4209 Repeated 2000 main test
with some additional
trials
Additional test on
Switchboard cellular
data
Additional test allowing
human or machine
transcripts with
extended training data

2002 Test durations 15–45
seconds
One session training

Table 8.2 Information on the NIST Speaker Recognition evaluations, 1996–2002.



8.4 Performance Measure

Two types of error can occur in a detection task, often denoted as missed
detections and false alarms. The miss rate, PMiss|Target, is the percentage of
target trials decided incorrectly; the false alarm rate, PFalseAlarm|Nontarget, is
the percentage of impostor trials decided incorrectly. These error probabil-
ities are determined from a system’s actual decisions.

NIST has chosen to make the basic performance measure a cost function
defined as a weighted sum of these two error rates. This detection cost,
referred to as the CDet cost for reasons discussed below, is defined as

CDet = (CMiss × PMiss|Target × PTarget)
+ (CFalseAlarm × PFalseAlarm|Impostor × PImpostor) (8.1)

The required parameters in this function are the cost of a miss (CMiss), the
cost of a false alarm (CFalseAlarm), and the a priori probability of a target
speaker (PTarget). Note that we must have PImpostor = 1 – PTarget. NIST has
used the following parameter values:

CMiss = 10; CFalseAlarm = 1; PTarget = 0.01 (8.2)

The relatively greater cost of a miss compared to a false alarm is probably
realistic for many applications. The a priori probability of a target speaker
is more arbitrary and application-dependent. Note that this specified a
priori probability need not, and in fact did not, correspond to the actual
percentage of target instances in the evaluation data. An advantage of this
type of error metric formulation is that the test data need not resemble
intended application data in terms of target richness.

The CDet value determined is generally normalized based on the prin-
ciple that a system without any speaker knowledge should have an expected
cost of one. With the parameters specified, a knowledge-free system should
opt to decide false for every trial, incurring the cost of a miss for all target
trials. This would result by Equation (8.1) in a CDet value of 0.1. Thus 0.1 is
used as the normalization factor for all CDet values.

The performance of systems on a given task can be shown by bar charts
of the CDet scores. The left side of Figure 8.1 shows two such bar charts. The
two parts of each bar show the separate contributions of the false alarm and
miss rates to the total CDet scores.

This detection cost metric is based on the actual decisions and provides a
single numerical value for comparing system performances. We also, how-
ever, want to examine the range of possible operating points of a system
and compare these across systems. In analyzing factors affecting system
performance, it is curves showing the range of possible operating points
that are of greatest interest. For this, we must use the likelihood scores that
systems are required to provide for each trial.

Receiver operating characteristic (ROC) curves have long been used to
show multiple operating points of systems. In [3], NIST introduced the
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alternative presentation of detection error trade-off (DET) curves for this
purpose. DET curves place the possible values of the two types of errors on
the horizontal and vertical axes using a normal deviate scale for both. They
have the key property that if the underlying distributions of scores for
target and impostor trials are normal, then the resulting performance
curve plots as a straight line. In the NIST evaluations, the DET plots of
system performance curves have almost always been fairly close to linear.
Because performance is plotted this way, we have chosen to refer to the
error cost function as the CDet value.

There are two special points that we note on each DET curve. One is the
actual decision point, denoted by a circle, �. The other is the point on the
curve having minimum CDet value, denoted by a diamond, �. These two
points are marked in the DET curve of Figure 8.1, and the two CDet bar
charts in the figure correspond to these two points. The closeness of these
two points is an indication of how well the system chose the likelihood
threshold value used for the actual decisions.

8.5 Evaluation Results

The main one-speaker detection task in each evaluation has generally con-
tained hundreds of speakers and thousands of trials. A subset of these trials
has generally been specified as constituting the primary condition of
interest for the evaluation. The primary condition for the 2002 evaluation
was specified as trials where the training and test segment were of a cellular
transmission type and where the test segment duration was in the 15 to 45
second range. This accounted for the great majority of the trials. In early
evaluations with fixed-duration test segments, the 30 second ones were
regarded as primary. In some of the earlier evaluations using landline con-
versations, one handset microphone type, namely electret, was specified
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for the primary condition. Also in earlier evaluations, the mismatched
(and, in one case, the matched) condition between the handsets used in
training and in tests of the target trials was defined to be part of the pri-
mary condition. Table 8.2 indicates the primary conditions used in each
evaluation.

Figure 8.2 shows a bar chart of the CDet scores for the actual decisions by
each system in the 2002 one-speaker detection task, using the primary con-
dition trials. Clearly, there is a great deal of variation in system perfor-
mance for this task. In accord with NIST’s understanding with the
participants, we are not identifying the various systems in this plot or the
DET plots presented hereafter.

Figure 8.3 presents the corresponding DET curves for the 2002 one-
speaker detection task. Since the DET plots generally contain more infor-
mation of interest in terms of performance results and trade-off, we here-
after concentrate on these.

8.6 Factors Affecting Detection Performance

Having access to the raw submission results of all participants gives NIST
the opportunity to analyze these results in order to explore various factors
that may affect recognition performance. Over the years, NIST has explored
the significance of numerous data, speaker and channel attributes on
overall performance. Here we discuss several of these using results from
recent evaluations.

Chapter 8 · The NIST speaker recognition evaluation program 249

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Miss detection

False alarm

Figure 8.2 Bar chart of primary condition CDet scores in the 2002 evaluation.



8.6.1 Duration

Earlier NIST evaluations, as noted, included separate tests in one-speaker
detection for segments of 30, 10 and 3 seconds duration. These showed that
performance was significantly greater for 30 second segments than for 10
second segments, while performance on 10 second segments significantly
exceeded that on 3 second segments. For the past four years, there were no
separate tests, and the one-speaker segments averaged around 30 seconds
in duration, but varied over a continuous range of up to 1 minute.

Figure 8.4 displays DET curves of one-speaker detection performance in
2002 by ranges of segment duration for one system. The results shown are
typical of most of the evaluation systems. They indicate that, for such sys-
tems, performance is significantly lower for segments shorter than 15 sec-
onds in duration, but that performance is not greatly affected for segments
longer than 15 seconds. This is consistent with the findings of previous
years, but indicates that the duration effect seen was limited and that once
some minimum duration (apparently in the 10 to 15 second range) is avail-
able, the amount of test speech ceases to be a major factor in performance.

8.6.2 Pitch

Pitch would appear to be an important factor in speaker recognition, but
attempts to specifically include it in algorithms have had only limited suc-
cess [4]. NIST investigated ways in which average speaker pitch affects per-
formance in several of the evaluations. Performance was not very
consistently affected by limiting consideration within each sex to speakers
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of particularly high or low pitch [5, 6]. We found, as might be expected, that
limiting impostor trials to instances where the impostor’s average pitch is
close to that of the hypothesized target (in the training data), while
including all target trials, degrades performance. But, perhaps surpris-
ingly, a bigger effect was observed when target trials are restricted to those
with the largest pitch differences between the training and test segments,
while all impostor trials are included.

Figure 8.5 gives an example of a typical system in the 1999 evaluation.
For each speaker, the average pitch of the training data and of each test seg-
ment was estimated. The plot shows a curve of all primary condition tests
and curves limited to target trials where the log pitch difference between
the test segment and the target speaker training data are in the high and low
25% of all such differences. Large pitch differences in target trials may cor-
respond to instances where the speaker had a cold or was feeling particu-
larly emotional during either the training or test conversation. Note how
large the performance differences are. For example, at a 10% miss rate, the
false alarm rate is around 4% when all trials are included. When target
trials are limited to the 25% that are closest in pitch, the false alarm rate is
less than 1%; when limited to the 25% furthest in pitch, the false alarm rate
exceeds 10%.

8.6.3 Handset Differences

The variation in telephone handsets is a major factor affecting the perfor-
mance of speaker recognition using telephone speech. For the landline
Switchboard Corpora, specific handset information is not provided, but
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telephone line information (i.e. the phone number) is. We can generally
assume that if two calls are from different lines, the handsets are different;
if they are from the same line, the handsets are probably the same.

Where possible, we have generally chosen to concentrate in the evalua-
tions on target trials where the training and test segment lines are different.
This is clearly the harder problem. Moreover, using same-line calls is, in a
way, unfairly easy, since for impostor trials, the training and test segment
handsets are always different because, with rare exceptions, speakers do
not share handsets. Thus, using same-line target trials could be viewed as
handset recognition, rather than speaker recognition.

Figure 8.6 shows the large performance difference in the 1999 evaluation
between using same-line and different-line target trials for one system. The
impostor trials are the same in both cases.

8.6.4 Handset Type

Most standard landline telephone handset microphones are of either the
carbon-button or electret type. We observed in early evaluations that the
handset types (i.e. the microphone types) used, in both the training and the
test segments, can greatly influence recognition performance.

MIT-Lincoln Laboratory, which has participated in all of the NIST
speaker recognition evaluations, developed an automatic handset labeler
in a previous evaluation [7]. This handset labeler uses the telephone speech
signal from one channel to assign a likelihood that the signal is from a
carbon-button handset as opposed to an electret handset. This likelihood is
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converted into a hard decision (carbon or electret). For subsequent evalua-
tions involving landline data, this hard decision was made available to all of
the participating systems for all of the training and test segments. It should
be noted that the labeler’s decisions were certainly less than perfect, as
occasionally different conversations from the same telephone number were
assigned the opposite type, but the decisions are believed to be generally
quite accurate. Figure 8.7 provides some information on the distribution of
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handset types in the conversations used in the 1999 evaluation. The main
point to note is that the received calls, generally from home phones, over-
whelmingly involve electret-type handsets, while the initiated calls, often
made from public phones, are split between electret and carbon-button
type handsets. There is also evidence that conversation sides involving
female speakers are more likely to be declared to be of electret type. This
may indicate a slight bias in the automatic handset-type detection algo-
rithm. It may also help to explain the slightly better overall performance of
most systems on male speakers compared to female speakers.

Figure 8.8 shows the variation in performance for different combina-
tions of training and test-segment handset types for one system in the 2001
evaluation. The data plotted here involves a subset of speakers for whom
both electret and carbon-button training data was provided, giving two
models for each speaker. The trials used are paired by the two models of
each target speaker. All target trials involve different telephone numbers. It
may be seen that there is a considerable performance advantage to having
matching handset types of the higher quality electret type. This was the
case for almost all systems. There was some variation in the relative perfor-
mance of the three other combinations across systems. There appear to be
competing advantages to having matched types in training and test data
and to having at least some higher quality electret data used, perhaps
particularly in the training.
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8.6.5 Landline vs. Cellular

The past few years have brought an increasing interest in the processing of
cellular data for both speech and speaker recognition. The two most recent
Switchboard collections (shown in Table 8.1) have consisted primarily of
cellular conversational data. These collections were used as a subsidiary
test in the 2001 evaluation and as the main evaluation data in 2002. Figure
8.9 presents DET plots of the best performing systems on the 2001 landline,
2001 cellular and 2002 cellular evaluation sets.

If the two cellular test sets are of comparable difficulty, and other com-
parisons suggest that they are, then Figure 8.9 shows some real improve-
ment in the best system performance between 2001 and 2002. The 2001
curves also show that the cellular test sets are measurably more difficult.
This comparison, however, rather understates the differences in relative
difficulty of landline and cellular data. This is because the landline data is
selected so that the target trials always involve different handsets in
training and test data, but the collection protocol for cellular does not
permit this, and, in most target trials, the training and test handsets are the
same.

The greater difficulty of speaker detection in the cellular context will be
subject to further investigation in future evaluations. New data collections
may make it possible to investigate target trials with different training and
test handsets, including mixed cellular and landline combinations.
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8.7 Extended Data Evaluation

The accuracy improvements in text-independent speaker detection over
the course of the NIST evaluations have been mostly incremental. Each
year, evaluation participants would add a few useful ideas to their existing
speaker detection systems, often influenced by what had worked for other
participants in the previous evaluation. Most systems in recent NIST evalu-
ations have converged on variations of the Gaussian mixture model (GMM)
technique [18]. The evaluation paradigm encourages this kind of
incrementalism, which can produce markedly, but usually not radically,
better systems over the years.

But in 2000, George Doddington suggested a radically different approach to
the task, which might, under proper conditions, offer major speaker recogni-
tion accuracy improvements [10, 17]. This idea was tested in what became
known as the extended data portion of the NIST one-speaker detection task in
the 2001 and 2002 evaluations. This involved considerably longer training data
durations (multiple conversation sides) and test segment durations (a whole
conversation side), relative to the conventional one-speaker detection task.

People are generally pretty good and quite robust speaker recognizers [22].
Doddington observed that people do a better job of detecting those with
whom they are quite familiar than those they do not know well. They become
accustomed to the speaking habits and idiosyncrasies of those they know well.
Doddington suggested making use of idiolectal characteristics of speakers for
whom considerable transcribed speech data was available. He showed that by
using the available manual transcripts of the Switchboard-1 conversations,
one could make use of the word patterns – specifically the common unigrams,
bigrams and trigrams – of individual speakers for detection purposes. In [17],
Doddington was the first to show the power of speaker-dependent language
models for speaker recognition. As expected, considerable training data is
needed to model a speaker’s language and realize the benefits of this new tech-
nique. The best results used eight or more conversation sides (generally five
minutes per conversation) of each speaker for training data.

The 2001 evaluation included a development-type test of the Switch-
board-1 conversations, as studied by Doddington. A jackknifing procedure
was used to make use of all the conversation sides as test segments, where
multiple models are trained for each speaker using 1, 2, 4, 8 or 16 sides as a
speaker’s training data. Participants were offered uncorrected transcripts
of all the conversation sides, exactly as produced by an automatic speech
recognition system provided by Dragon Systems [12]. This system had an
estimated word error rate on conversational telephone speech of somewhat
under 30%. But Dragon Systems had shown in previous work that even par-
tially reliable ASR systems could be quite useful for various tasks, such as
topic spotting [13].

Doddington’s successful demonstration of idiolect quickly led others to
the discovery of recognizing speakers based on their speaking habits and
idiosyncrasies at the phonetic level [19, 20]. A speaker’s phone patterns –
specifically the common unigrams, bigrams and trigrams – can be used for
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detection purposes. These phone patterns reflect the dynamic realization
of phonetic features and are used to model an individual’s pronunciation
inventory. The phone recognizer needs to be consistent, not necessarily
accurate. A strength of the phonetic method is that a speech recognizer,
which might not exist, is not required in the language being spoken. Phone
recognizers trained in languages other than the spoken language have also
been demonstrated to work well, as has the combination of multiple phone
recognizers trained in various languages [15, 19, 20].

The 2001 NIST evaluation results of these new speaker recognition
methods were quite dramatic. Systems were developed that combined [19,
20] the use of idiolectal information based on the ASR transcripts, phonetic
information, text-constrained GMM (TC-GMM) [21], and traditional
GMM approaches. Figure 8.10 shows DET curves of the best performing
systems on this data. For comparison, the best 2001 DET curve for the main
one-speaker detection task, using Switchboard-2 data and much more lim-
ited amounts of training and test data, is also shown. These results show
dramatic improvements in error rates, approaching an order of magnitude.

The 2002 evaluation also had an extended data test, this time using data
from two of the phases of Switchboard-2. The Dragon ASR system was no
longer available and, to prepare transcripts in time for the evaluation, a
real-time BBN/ASR system was run at NIST on all of the test data. The BBN-
provided recognizer was not intended to be of evaluation quality, as it was
trained on only 40 hours of speech data and designed for real-time opera-
tion. This resulted in a word error rate of approximately 50%, which is con-
siderably higher than that of the non-real-time Dragon recognizer used the
year before.
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Figure 8.11 shows the DET curve performance of the best systems in the
2002 evaluation, along with the best 2001 conventional system DET curve
for comparison. The 2002 results, while still impressive, were clearly less
impressive than those in 2001. The higher error rates of the ASR transcripts
are most likely one of the reasons for this. Another reason might be that the
Switchboard-2 conversants, unlike those in Switchboard-1, often did not
stick to their assigned topics and preferred casual chit-chat, which could
affect idiolectal techniques.

Note, in any case, that these outstanding speaker recognition results cur-
rently hold only for situations where extensive training and test data are
available, which limits the potential applications. Moreover, the extended
task trials were less controlled than those of the main evaluation for differ-
ences between training vs. test handsets and male vs. female speakers. To
the extent that idiolectal information was used, these differences probably
matter little. The best results combined GMM, TC-GMM, idiolectal, and
phonetic techniques. It is hoped that future evaluations will be able to
include standard and extended data tests that involve the same speakers
and conversation sides for a more direct comparison.

8.8 Multimodal Evaluation

An additional type of one-speaker detection test was included in the
2002 evaluation. The FBI has an ongoing interest in forensic applications
and was pleased to make available a previously collected corpus for this
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evaluation. We chose to describe the test as multimodal because the corpus
contains different speech segments from individual speakers recorded
using a telephone handset (internal line), a close microphone and a far
microphone. Thus it was possible to evaluate the effects of having different
microphone types used as training and test data.

The FBI corpus is described in [14]. The multimodal test made use of 87
male speakers. In addition to its multiple recording modes, it contains
training segments of 30 and 120 seconds duration, test segments of 3, 12, 30
and 120 seconds duration, and both spontaneous and read segments. It also
is designed for both text-independent and text-dependent testing, though
the NIST evaluation was limited to the text-independent parts.

A somewhat different performance measure seemed needed for this type
of evaluation. A higher cost for a false alarm than for a miss seemed appro-
priate in a forensic setting, while it seemed best to view the a priori proba-
bility of a true speaker (target) trial as equal to that of an impostor trial.
Thus we used the values

CMiss = 1; CFalseAlarm = 2; PTarget = 0.5 (8.3)

We also decided to extend the simple true/false detection model in this
case to allow no-decisions. We assigned all no-decisions a cost of 0.25:

CNoDecision|Target = CNoDecision|FalseAlarm = 0.25 (8.4)

Thus in this case, the system should decide true, false or no-decision
according to which expected cost is lowest:

E[Cost|FalseAlarm] = CFalseAlarm × (1 – Pr(Target|score)) (8.5)

E[Cost|Miss] = CMiss × Pr(Target|score) (8.6)

E[Cost|NoDecision] = C[NoDecision|Target] × Pr(Target|score)
+ C[NoDecision|NonTarget] × (1 – Pr(Target|score)) (8.7)

Here Pr(Target|score) is the confidence, i.e. the confidence in making a
target decision as a function of score. This confidence was a required
system output for each trial in the multimodal task. The system should then
make a positive detection if this confidence exceeds 87.5% and a negative
detection if it is less than 25%. Otherwise, a no-decision is appropriate.

Basically, this was an easier task than the main one-speaker detection
task since multiple outside phone lines are not involved and the data is not
conversational. The bar charts and DET plot results for one system in
Figure 8.12 show the considerably higher level of performance than in pre-
vious one-speaker detection plots. The nine curves show all combinations
of training and test data from the three microphone source types. For the
matched cases, the best performance is with the close microphone and the
worst with the far microphone. In the mixed cases, those involving the far
microphone generally have lower levels of performance.
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Note in the figure that each actual decision cost bar is divided into four
parts corresponding to the four different types of error. Note also the low
actual decision costs and that the actual decision points on the DET curves
are off the actual curves because no-decisions are allowed. (The percent-
ages of target and non-target trial no-decisions are shown in the DET
legend.) One may then ask whether these actual decision error rates are
acceptably low for a forensic application.

These results, however, should not be considered typical of actual capa-
bilities in forensic situations. Forensic recordings are sometimes of very
low quality, and the emotional stresses that may be involved are not
reflected in test recordings in the current evaluation. NIST hopes that data
will become available to allow further investigations of these matters in
future evaluations.

8.9 Future Plans

Current plans call for the annual NIST evaluations to continue. The Lin-
guistic Data Consortium has plans to collect additional conversational
data, both landline and cellular, to support future research, primarily in
speech recognition. We hope that suitable portions of this data will also be
appropriate for continued research and evaluation in the area of speaker
detection.
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Speech recognition research has made considerable progress in recent
years. It is anticipated that there will soon be available near real-time sys-
tems for recognizing conversational telephone speech with word error
rates below 20%. The extended data evaluations have shown that such rec-
ognition performance can greatly aid speaker recognition systems, partic-
ularly when sufficient data is available. Such speech recognizers can be
expected to be a part of future text-independent speaker recognizers.
Upcoming evaluations may examine the effect of varying training and test
segment durations involving long durations that allow systems to get to
know speakers via idiolectal characteristics.

There is also interest in further multimodal-type tests, to the extent that
suitable data can be made available.

It should be emphasized that the NIST evaluations are open to all
research sites that wish to participate and share information about their
systems at the workshops following each evaluation. Those who may be
interested in participating or who know of data sources that could be used
in the evaluations are encouraged to contact NIST [9].
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9Large-Scale Identification
System Design

Herve Jarosz and Jean-Christophe Fondeur

The ability to identify people has been a constant preoccupation of dif-
ferent civilizations and, more recently, of independent and government
organizations. The uniqueness and immutable features of fingerprints
have been recognized since the dawn of humanity, drawings of fingerprints
having been discovered in caves dating from the earliest ages. Early Egyp-
tian potters used to mark their products with their own fingerprints, while
Chinese people were using similar methods to authenticate land transfers
and criminal confessions. Much later, the advent of modern technology and
computers provided a means to efficiently automate biometric identifica-
tion, and led to the first automated systems in the early 1960s. Early auto-
mated applications were primarily by law enforcement agencies, the aim
being to identify criminals. In the past 15 years, many civil applications
have begun to appear to guarantee the uniqueness of a delivered document
– such as ID cards, driver’s licenses – or a right – such as welfare, access to a
country or corporate area, and on job applications. It is also increasingly
common to incorporate biometric data directly into documents, allowing a
check that the holder is the rightful owner. It is evident in this scheme that
the contribution of the biometric system is essential because it both guar-
antees the uniqueness of the delivery – thus ensuring the fundamental
principle: one person, one right – and checks the holder’s identity. This
trend has accelerated since the terrorist attacks of September 11, 2001.

Whilst early automated systems dealt with small parts of the population (typ-
ically fewer than a million people), they now have to address entire populations
– typically tens of millions. It is legitimate to ask what levels of performance can
be achieved on such large population databases.The aim of this chapter is to dis-
cuss the main difficulties associated with designing such a system and, more
particularly, the problems related to feasibility and performance.

9.1 Introduction

9.1.1 Historical Background

The fingerprint image was one of the first biometric elements to attract the
attention of scientists at the end of the 19th century. The significance of
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fingerprints was highlighted by the discovery of two important features:
their uniqueness – even identical twins have different fingerprints – and
immutability – fingerprint singularities remain constant throughout a
lifetime. By the beginning of the 20th century, police forces such as
Scotland Yard (UK) and the Federal Bureau of Investigation (USA), had
begun to use fingerprints to solve crimes. The processes of forensic
fingerprint card creation and management, and the associated manual
search techniques used by police forces, were computerized in the 1960s
when computer processing became more widely available. Because
fingerprint image processing algorithms required a lot of computational
power, the first Automatic Fingerprint Identification Systems (AFIS) were
implemented through the use of specific hardware incorporated into the
most powerful computers available at that time. With improvements in
computer science and electronic engineering – especially the design of
microprocessors – AFIS systems became increasingly powerful and cost-
effective, thus offering new capabilities to users. The first large-scale
identification systems were implemented by federal police forces (BKA in
Germany; FBI in the USA), who were responsible for large populations
across large geographical areas.

In the 1990s, new applications appeared for such systems in the issuance
of documents associated with rights and privileges, such as ID cards,
driver’s licenses and social welfare documents. The major requirement was
to ensure that the right or privilege allocated by the document was not
delivered several times to the same person. Biometry was chosen as an effi-
cient means to detect duplicate applicants in a large population. In such
applications, biometric measures (e.g. fingerprints) of each applicant are
captured at the time of application, and then searched against the bio-
metric measures of the entire enrolled population. If the applicant is
already in the database, this biometric measure will be detected and the
enrollment will be rejected. Otherwise the right is granted and the appli-
cant’s biometric measure is inserted in the database.

More recently, other biometric techniques, such as iris and face recogni-
tion, have appeared and have been automated, and whilst they employ less
mature technologies than fingerprints, they have a definite role to play in
large-scale identification systems. Although a relatively recent technology,
iris recognition has proved to be a very efficient and discriminating
technology. It is therefore, from a performance point of view, very suitable
for large systems, allowing for as high accuracy and throughput as finger-
printing. Another predominant technique, face recognition, has always
presented a challenge for the pattern recognition scientific community.
Although it has not reached the level of accuracy of fingerprint or iris tech-
nology, facial recognition can prove useful in the design of large systems.
This is particularly true in applications where face images have already
been collected – typically for certain identity documents. In these applica-
tions, face recognition can be used with reasonable accuracy without the
need to re-enroll the whole population by capturing the fingerprint or iris
image, and thus can be easily added to an existing system.

264 Biometric Systems



9.1.2 Large-Scale Identification Systems: Requirements and Basic
Features

Large-scale biometric systems confront two different types of challenge:
those common to all large, general-purpose information systems and those
specific to biometric measurement and comparison. The severity of these
challenges is such that very few companies have succeeded in successfully
designing such systems. We can classify the main difficulties to be con-
fronted in large-scale system design into the following topics:

� Architecture issues: distributed CPU, site availability, scalability,
redundancy.

� Administration issues: logs, reports, user management, backup/restore.
� Security issues: integrity, confidentiality of data, virus protection.
� Process issues: multiple applications, legal issues, document issuance.
� Operational issues: operator training, tuning, maintenance.
� Performance issues: accuracy, throughput, response time.

The purpose of this chapter is not to discuss in detail the difficulties related
to each of these topics but to focus more precisely on performance issues
with respect to:

� Database size
� Desired transaction throughput
� Expected performance

The primary requirement of a large-scale system is the searching of sub-
mitted samples against very large databases of enrolled records. For
example, the FBI’s IAFIS includes more than forty million records of ten
fingers each. The National Registration Department’s AFIS in Malaysia
includes eighteen million records of two fingers each. The Federal Ministry
of Internal Affairs’ AFIS in Nigeria will include sixty million records of six
fingers each. The notion of a large system implies at least ten million regis-
tered persons. For this reason 1:1 comparison (verification) does not fall
within the problem areas of large-scale identification systems.

Large systems also require high throughput. For example, the FBI’s AFIS
performs more than 50,000 searches daily, and the Nigerian AFIS is
designed for 200,000 searches each day. A large system usually caters for a
daily throughput of at least 10,000 searches. A definition of accuracy is pro-
vided in the lexicon at the end of this chapter. For large-scale systems
employing human checks on potentially matching search–enrollment
record pairs, accuracy measures the ability of the system to retrieve the cor-
rect record within the top k candidates from a database. The accuracy
required is usually not lower than 95% for identification and more than
98% for verification. Addressing the feasibility of performance issues con-
sists of determining the highest accuracy to be expected given average
database size and average throughput.
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9.2 Extrapolation of Accuracy

Several research studies have been conducted on performance evaluation
and large-scale identification system design in the past few years and sig-
nificant advances have been made on evaluation methods for biometric
systems. This chapter focuses more specifically on development of very
large-scale biometric systems. Such systems combine the difficulties
inherent in large information systems and those associated with the use of
biometrics. This chapter also tries to answer several questions that natu-
rally come to mind when addressing large-scale identification systems.
Firstly, is the system feasible (i.e. is it technically realistic to ask a system to
perform daily hundreds of thousands of fingerprint comparisons against a
database of tens or hundreds of millions of persons)? Secondly, what levels
of performance can be expected, and most importantly, how can we mea-
sure or predict them? We do not aim here to propose a new theory or meth-
odology but rather to present the issues and existing complementary
methodologies, in order to see what can be achieved with these methods
and how to avoid misinterpretation of the results.

9.2.1 Introduction

In order to estimate accuracy, specific tests (or benchmarks) must be con-
ducted. They consist of creating a test scenario representing the final
system, but on a smaller scale. Such a test uses two sets of data: the back-
ground database, simulating the system database, and the search database,
simulating applicants. Large-scale system performance is generally mea-
sured on relatively small databases because of the expense of collecting
large amounts of data. This is the case even for fingerprint technology,
which has the largest existing biometric databases. Very few companies in
the world can conduct benchmark tests on large databases. A typical evalu-
ation consists of searching a few hundred fingerprints against a back-
ground database of several hundred thousand records. Even if this appears
to be a large data set, this is still several orders of magnitude smaller than
that of an operational large-scale system. An effective methodology must
address two problems: choosing a data set (background and search) that is
both statistically representative of the population and large enough to
obtain reliable results. Then these results must be extrapolated to the size of
proposed system.

In addressing the first issue, it is sometimes proposed to add synthetic
data to the test set or to artificially increase the diversity of the test set by
adding artificial noise, thus simulating more difficult acquisition environ-
ments, lower levels of user training and cooperation, or other adverse col-
lection conditions. It is generally advised to avoid such methods for
scenario testing (see [1]), as well as any modifications to the real data,
because the resulting bias is almost impossible to predict or remove and
makes the results very difficult to interpret. In this discussion we will
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assume that the data set used to evaluate the performance is statistically
representative of the real environment being modeled, and we will there-
fore focus only on extrapolation of the performance.

Speed/throughput extrapolation will not be studied here (although this
is a very critical element for feasibility), as it follows the same rules as any
large system and is not specific to biometric systems. People knowledge-
able in the design and tuning of such large systems know that the speed/
accuracy issue must be addressed with extreme care. It is in particular very
tempting and sometimes quite useful to do some quick and simple calcula-
tions to extrapolate speed and throughput. However, this can lead to false
conclusions for several reasons: system overheads, nonlinearity of the
behavior on small databases [17], or simply because a different tuning can
be selected based on the size of the database. For these reasons, background
test databases smaller that a few hundred thousand people are not suitable
for reliable speed/throughput extrapolation.

We will now focus on the accuracy extrapolation problem, since it is spe-
cific to biometric systems. In other words, how do we predict accuracy on a
very large database from measurements obtained on a small database?

The purpose of the extrapolation is to forecast the accuracy of a system
with a large database from results obtained with a smaller database. We will
in this section study in some detail the two ratios “False Match Rate” (FMR)
and “False Non-Match Rate” (FNMR) (see Section A.3). Operationally, for
an identification system, FMR corresponds to “false alarms” and needs to
be checked by a human operator. It is a measure of the selectivity of the
system: low FMR means high selectivity. FNMR corresponds to “successful
fraud”. It is a measure of the accuracy of the system. Low FNMR means high
accuracy. Interdependence between these two rates is often illustrated by
the ROC (Receiver Operating Characteristic; see Figure 9.1), which corre-
lates accuracy with one of these error rates. The ROC directly pinpoints
accuracy given the error rate. Each point corresponds to a different tuning
(threshold) of the system.
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9.2.2 Key Concepts

The extrapolation methods presented in this section are related to the iden-
tification process; i.e. searching for a record in a database of several million
records. The search result is achieved by measuring the matching distance
between the search record and each record in the database. A small distance
between two records indicates that they are likely to have come from the
same individual. The extrapolation methods are based on the study and
analysis of the statistical distribution of this distance.

At this stage it is useful to introduce some mathematical definitions and
concepts, and we will take here the formalism developed in [2]. If d(s,t) is the
distance between a sample s and a reference t, we will call fgen(d) the genuine
density function of d when both sample and reference come from the same
person and fimp(d) the impostor density function when sample and refer-
ence come from a different person. They usually present as in Figure 9.2.

The interesting part of the impostor distribution is its tail on low distances
(we can call it the impostor tail), and the interesting part of the genuine dis-
tribution is its tail on high distances (we can call it the genuine tail). We will
concentrate here on the impostor distribution rather than the genuine distri-
bution for two reasons. First, as we will see later, it is this distribution that
determines the behavior of very large systems. The other reason is that the
impostor tail (smallest distances for non-matching pairs) follows a clean
probability model (“bell curve”-like) and is therefore well analyzed through
statistical tools, whereas the genuine tail (highest distances for matching
pairs) contains an important component of noise on the data (“bell curve” +
some random noise: scars for fingerprints, lenses/eyelids for iris, beards and
glasses for faces etc.) and thus does not follow a simple model.

In the case of identification, it is useful to introduce explicitly the data-
base size, and we can define, for a given threshold x, FMR1:1(x) and
FNMR1:1(x) as:

FMR dimp11
0

: ( ) ( )x f u u
x

= ∫ (9.1)
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and

FNMR d dgen gen11
0

1: ( ) ( ) ( )x f u u f u u
x

x

= = −
∞

∫ ∫ (9.2)

FMR1:1(x) is the probability that one reference and one sample do not
come from the same individual, although their matching distance is low
(below the threshold x).

FNMR1:1(x) is the probability that one reference and one sample come
from the same individual, although their matching distance is high (above
the threshold x).

The index 1:1 means that one sample is compared to one reference (verifi-
cation process).

We can now define the probability FMR1:N(x) that one sample matches
one reference out of N but should not have: it is the probability that one of
the (non-self) reference templates in the database has a distance below the
threshold. We can also define its dual rate, the probability FNMR1:N(x) that
one sample does not match one (self) reference out of a set of N references
but should have: it is the probability that the sample and its matching refer-
ence have a distance above the threshold.

We will now present four classical methods for accuracy extrapolation,
corresponding to different levels of complexity and assumptions:

� Method 1: Extrapolation from experiences
� Method 2: Identification as a succession of N verifications
� Method 3: Extrapolation with extreme value
� Method 4: Extrapolation when the distance can be modeled

9.2.3 Method 1: Extrapolation from Experiences

The first method is very empiric and makes few assumptions about the dis-
tance distributions. It just assumes that the tail of the impostor distribu-
tion is continuous and regularly variable, building a graph for accuracy
against different sized databases as in Figure 9.3. This is done by searching
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a data set of fingerprints against different-sized databases of reference
prints, and by fitting this graph with a model (linear regression for
example). Of course, different biometrics or systems will follow different
models in an appropriate representation space. This model can then be
used to predict the accuracy (the probability that the correctly matching
record will be returned as the top candidate) for larger databases. This gen-
erally works locally but may yield false conclusions if it is used for a data-
base that is much larger than the test database. This method is usually
reliable if the test set is at least one-tenth the size of the final database. Pro-
viding that a large representative set of data is available, this method
affords reliable results.

9.2.4 Method 2: Identification as a Succession of N Verifications

In this section we make the simplifying hypothesis that an identification
against a database of size N consists on N one-to-one independent tests.
Under this hypothesis, FMR1:N is given by:

FMR FMR1 111 1: :( ) ( ( ))N Nx x= − − (9.3)

Under this hypothesis, FNMR1:N(x) does not depend on the database size:

FNMR FNMR1 11: :( ) ( )N x x= (9.4)

It is then most interesting to use these equations to get a “pseudo-mathe-
matical” feeling of the influence of the database size:

� Equation (9.3) shows that the database size N has a direct impact on
FMR1:N: it correspond to the intuitive idea that in a large database the
probability of finding a reference close to a given sample is higher than in
a small database.

� Equation (9.4) shows no direct impact of the database size N on the
FNMR. However, there is an indirect impact. It is most important to
clearly understand this as our key point.

Let us take two systems, A and B. Their populations have the same gen-
uine and impostor distributions. They use the same technology, character-
ized by FMR1:1(x) and FNMR1:1(x), but A has a larger database than B (NA >
NB). Equation (9.3) implies that if they have the same threshold,
FMR1:N(x)A > FMR1:N(x)B, which means that A would have more false
alarms than B. If we want both systems to have the same selectivity
(number of false alarms), the threshold of the system A must be set at a
lower value than the threshold of system B (xA < xB), given by:

FMR FMR

FMR
A A A

B

A

B

1 11

11

1 1

1 1
: :

:

( ) ( ( ))

( ( ))
N N

N

x x

x

= − −
= − − = FMR B B1: ( )N x

(9.5)

270 Biometric Systems



or

( ( )) ( ( )): :1 111 11− = −FMR FMRA BA Bx xN N (9.6)

and thus

FNMR d

d d

A A gen

gen gen

A

B

11: ( ) ( )

( ) ( )

x f u u

f u u f u u

x

x

=

= +

∞

∞

∫

∫
x

x

x

x

f u u x

A

B

A

B

gen B Bd FNMR

∫

∫= +( ) ( ):11

(9.7)

Through Equation (9.4),

FNMR FNMRA A B B1 1: :( ) ( )N Nx x> (9.8)

This brief analysis illustrates the mechanism of performance extrapola-
tion: first, understand the effect of database size N on FMR, then find a rule
of variation of the threshold x(N) to compensate for this effect, and finally
measure the effect of this threshold x(N) change on the FNMR.

Another short analysis of these equations leads to the conclusion that the
key is the dependency of the threshold x on the database size N: we have
seen (Equation 9.3) that FMR FMR1 111 1: :( ) ( ( ))N Nx x= − − . If x is not a func-
tion of N, then

lim ( ):
N

N x
→∞

=FMR1 1

which means that when N becomes very large, the selectivity decreases
towards zero. It is therefore necessary to have the threshold x be a function
of N to be able to maintain the selectivity.

We can now use Equations (9.3) and (9.4) to get the first extrapolation
method for system accuracy (FMR1:N and FNMR1:N) on a large database of
N references, knowing the performance obtained in verification
(FMR1:1(x) and FNMR1:1(x))

Table 9.1 shows that the FMR1:1 which leads to a constant FMR1:N
depends on the database size.

Such small rates need a large enough database to be estimated with small
confidence intervals. Some guidelines exist to help determine the number
of required trials to get a relevant estimation of the probability of error –
e.g. the “rule of 30” (see [3]), which says that accurate estimation is
obtained if the test set is large enough to measure at least 30 errors (false
matches). With N samples, estimation of FMR can be done on N(N – 1)/2
tests (or fewer to avoid correlation between tests). The application of this
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rule shows that the size of the test required to estimate precisely FMR1:1 is
of the order of ( / ):

/60 11
1 2FMR . If N = 108, FMR1:1 =10–10 and 8 × 105 samples

are required.
In practice, accuracy and throughput are both improved by imple-

menting a system workflow more sophisticated than just N one-to-one
comparisons. This extrapolation method then becomes more difficult to
apply. This is the case when the database is partitioned based on “level one”
fingerprint classification (such as loop, arch or whorl), or when more than
one biometric is used (two fingers etc.) or when the identification process
consists of a pipeline of different algorithms, or when the decision algo-
rithm is more sophisticated than a simple threshold. In these cases, the pre-
vious model appears to be too simple and does not provide accurate
estimation. Some studies [18] interestingly tried to go further in the mod-
eling of such systems – binning, multi-fingers etc. – and provide refined
equations taking into account these parameters. These equations improve
the accuracy of the estimate and are most useful in understanding the
influence of all parameters. However, it is difficult to produce a model that
takes into account all of the parameters and the complexity of real systems
– especially the correlations between parameters (see [19]).

9.2.5 Method 3: Extrapolation with Extreme Value

The problem of estimation of tails of distributions from only a few
observed values has been addressed by mathematicians outside the context
of biometrics. For example, in the design of structures such as bridges or
ships, natural phenomena such as wind velocity or wave impact pressure
must be taken into account. Physical models do not always exist to help
forecast the maximum potential of such phenomena. A statistical approach
may offer a simple way to identify such extremes. For example, when engi-
neers design a bridge whose life expectancy must exceed 100 years, they
need to know the maximum wind velocity which might be expected over
this period, even though they may have available only 25 or 50 years of
records (see [4]). Extreme value theory proposes a method for estimating
the probability of such maximum wind velocity – which could certainly be
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N FMR1:1→ FMR1:N

1 10–2 1.0%

102 10–4 1.0%

103 10–5 1.0%

104 10–6 1.0%

105 10–7 1.0%

106 10–8 1.0%

107 10–9 1.0%

108 10–10 1.0%

Table 9.1 This table shows the value of FMR1:1 necessary to obtain a fixed FMR1:N for different
sizes of database. FMR1:1 must decrease in an exponential way.



greater than all speeds observed in the available data. Such values are called
Peaks Over Threshold (POT). If the provision of 25 years of wind velocity
records is to be sufficient in forecasting the maximum velocity for the next
hundred years, it is advisable to take into account all highest observed
values – meaning the maximum speed and the values closest to this max-
imum, i.e. the extreme values. These values only occur in a few instances or
in a small part of the data used to estimate the density function.
Consequently, they only concern its tail.

The extreme value theory models the tail of the impostor distribution
function:

F x x f u u
x

( ) ( ) ( ):= = ∫FMR dimp11
0

(9.9)

The function F(x) is approximated by the empirical distribution function
FN(x) estimated for N independent distances X XN1, ,… :

F x
N

F xN X x
Ni

N

i( ) ( )= →≤
→∞=

∑1
1

1

(9.10)

FN(x) is the measured percentage of impostor distances which are smaller
than x.

In order to determine the approximation of the curve F(x), let us con-
sider N independent variables X XN1, ,… measuring distances obtained for
sample–reference impostor pairs. Then, recent results show that (see [6]):

for x > u,
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⎧
⎨
⎪

⎩⎪ x a otherwise
(9.11)

GPD means the Generalized Pareto Distribution, F is defined in Equation
(9.9), N is still the database size, a and c are parameters, and u corresponds
to the beginning of the tail. Expressions for determining the parameters are
given in Section A.4.2.

Figure 9.4 shows the link between the approach presented in the previous
section and this one. The step curve FN(x) (Figure 9.4(a)) represents the
best approximation of FMR1:1(x) that the previous approach allows,
whereas the continuous curve of Figure 9.4(b) represents the smooth
approximation from extreme value theory. Since we are interested in the
inverse of the function FMR1:1(x) in order to determine the best decision
threshold x, the continuous curve in Figure 9.4(b) gives better results (i.e
more accurate and more stable) than the empiric distribution function
FN(x) (Figure 9.4(a)).

Table 9.2 compares the estimation of the decision threshold using
method 2 and method 3 (extreme value). Method 3 returns a precise value,
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whereas method 2 cannot do better than an interval whose size grows when
N increases. Figure 9.5 shows how the values in Table 9.2 are obtained.

Furthermore, the interval given by the inverse empirical distribution
Fimp is delimited by two distances that result from the match of two
sample–reference pairs. The estimation of Fimp by the extreme value
method incorporates several values, which makes it much more reliable.
Many discussions still continue about the samples that should be used for
the parameters estimation, the convergence rate, and the intervals of confi-
dence (see [7]). The field of extreme value still attracts much research
attention and has its own scientific journal named Extremes. There also
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Figure 9.4 Graph (a) gives FMR1:1(x) for small values of x computed on a database with a high but
finite number of references (F = FN). Graph (b) gives the estimation of the tail of F(x) = FMR1:1(x)
using the theory of extreme values.

Simple extrapolation Extreme value

N Threshold x FMR1:N Threshold x FMR1:N

10 0.50 1.0% 0.50 1.0%

1,000 0.48 1.0% 0.48 1.0%

10,000 in [0.43; 0.45] 1.0% 0.44 1.0%

100,000 in [0.36; 0.40] 1.0% 0.38 1.0%

1,000,000 in [0.26; 0.33] 1.0% 0.30 1.0%

10,000,000 in [0.12; 0.25] 1.0% 0.20 1.0%

100,000,000 in [0; 0.12] 1.0% 0.08 1.0%

Table 9.2 Comparison of the estimation of the decision threshold with a simple extrapolation
(Section 9.2.3) and the extreme value (Section 9.2.4).



exist methods to directly compute the quantiles of FMR1:N (see [10]) or
provide some intervals of confidence (see [11]).

This method gives the best estimate of the accuracy possible without
postulating an analytic mathematical expression for the impostor density
function.

9.2.6 Method 4: Extrapolation when the Distance Can Be Modeled

Until now, we have supposed that genuine and impostor distributions were
known only by their empirical estimations. However, in some cases, the dis-
tribution of the matching distance between samples and references can be
modeled. In such cases, the mathematical expression for the impostor den-
sity function is known and can be used for extrapolation purposes.

This is the case for iris recognition as developed by J. Daugman [12]. The
first step in this process consists of coding an iris by a sequence of 2048 bits.
The matching distance between two irises then becomes the number of
non-matching bits in corresponding places in the two sequences. The
matching distance is the sum of 2048 Bernoulli trials with the parameter p,
the probability that any pair of corresponding bits in the two irises are dis-
similar. If these random variables were independent, the matching distance
would follow a binomial distribution with parameters (2048, p) . In reality,
the trials are correlated, but correlated Bernoulli trials can still be approxi-
mated by a binomial distribution of parameters (n, p) (see [14]) where n is
the number of independent variables or the number of degrees of freedom
(see Table 9.3):
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Estimated Fimp

Desired F1:1

Threshold given by
the estimated Fimp

Interval given by
the empirical Fimp

x

Figure 9.5 The decision threshold is obtained by computing the inverse function of Fimp. This
operation is possible for the smoothed curve obtained with the extreme value theory, but only
leads to an interval with the empirical Fimp, which is a step curve.
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The second example concerns fingerprint identification (see [13]). In
this paper a very simple model of fingerprint comparison is provided. A
sample and a reference are considered as equal when they share at least 12
minutiae of the 36 possible. Two minutiae match when their positions and
directions are similar. The assumption that minutiae are uniformly distrib-
uted inside a fingerprint leads to an expression for the probability that
there are exactly p corresponding minutiae between the sample and refer-
ence. This case is analogous to the previous example for iris recognition,
except that the matching score is the number of common minutiae. This
gives an exact expression for the impostor distribution under the assump-
tions taken, corresponding to a very simple matching algorithm.

9.2.7 Influence of Classification

In a large-scale system, optimization of resources and throughput are two
key issues for especially for the matching subsystem. In such an architec-
ture, when the number of transactions per day becomes important and
when the size database is very large, it is often necessary to speed up the
matching process. This issue was also relevant before search automation,
when comparison was performed manually and the efficiency of the
system was limited by the number of samples that could be compared daily
by an operator. The impact of the use of “level one” classification (loop,
arch, whorl or the like) on large-scale systems has been widely discussed by
several authors: does classification simplify the problem of large systems
by reducing the apparent size of the database compared? Does classifica-
tion reduce the overall accuracy of the system? Can we expect some accu-
racy improvement at the matching stage because an identification no
longer requires as many comparisons as references in the database? We will
discuss these issues pragmatically by considering the system as a “black
box” and looking at the impact of classification on both the error rates and
throughput.

Generally the goal of classification is not to improve the accuracy of the
system by restricting the search space but to augment the throughput. In
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N FMR1:1 FMR1:N Decision threshold

1 10–2 1.0% 0.426

102 10–4 1.0% 0.381

103 10–5 1.0% 0.365

104 10–6 1.0% 0.348

105 10–7 1.0% 0.336

106 10–8 1.0% 0.324

Table 9.3 Results extracted from [12] with p = 0.5 and n = 244.



fact, the overall identification process can be modeled as a succession of fil-
ters, each reducing the size of the input list in order to arrive ultimately at a
candidate list or even a single candidate. Classification is one these filters
and is characterized by a filtering rate. The accuracy of the associated fil-
tering process (i.e. the probability of correct print classifications) and the
filtering (or “penetration”) rate (i.e. the part of the database actually
searched) are the two most important characteristics of any classification
method and they are linked: increasing the number of database records
returned after the filtering process (thus increasing the filtering rate)
reduces the risk of dropping the right record (if contained in the database)
from the list. At the extremes, if the filtering process returns the entire data-
base, the Miss Rate due to the classification process will be zero, but the fil-
tering rate will be 100%, i.e. there will be no throughput gains from the
filtering process. Obviously, this would be a particularly inefficient classifi-
cation method. A good classification method must provide a high degree of
accuracy and a low filtering rate.

Today, among the different biometric technologies, only fingerprinting
generally uses classification. This usage was inherited from past experts
who observed and modeled fingerprints based on visual pattern analysis.
Different pattern classification algorithms or techniques were developed
historically, such as the Henry classification or the Vucetich classification
schemes. The main advantage of these techniques is that they can be used
either manually or automatically. However, their drawbacks are the relative
complexity of the rules followed by the experts to reference the fingerprint
image and the non-homogeneity of the class distribution (cf. Table 9.4).

The total number of classes may be increased and the efficiency refined
when the classifications of several fingers are combined together. Table 9.5
shows that a 10-finger classification based on only five classes per finger
appears to be powerful and efficient since the partition space now contains
around 1 million classes.

However, because of the non-uniformity of the class distribution and
the class correlation between fingers, the efficiency of this approach is
reduced. For instance the 10-finger class “RRRRRLLLL” (where R and L
stand for Right and Left loops and the position refers to the finger number
starting from right thumb up to left little finger) contains around 6% of the
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Pattern type Left thumb (%) Left index (%) Right thumb (%) Right index (%)

Arch 3.01 6.09 5.19 6.29

Tented arch 0.40 7.72 0.58 7.96

Right loop 51.26 36.41 0.63 16.48

Left loop 0.46 16.96 58.44 39.00

Whorl 44.77 32.45 35.04 29.93

Scar 0.03 0.17 0.04 0.14

Amp 0.07 0.20 0.09 0.20

Table 9.4 Classification of fingerprints into seven pattern classes (computed on the FBI’s data-
bases see [15]).



population, whereas the class “LLLLLRRRRR” is almost empty. In order to
measure the efficiency of a classification, we introduce the definition of fil-
tering rate or penetration rate.

Let us assume that the database is divided into C separated [2] classes
and the ith class contains ni references, the penetration rate p or filtering
rate is estimated by:

p
n
n
i

i

C
= ⎛
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1
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i

C
=

=
∑
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(9.13)

If we assume that the class distributions of the samples is the same as the
class distributions for the references stored in the database, then the pene-
tration rate gives the average proportion of references having the same
classification as the sample. Thus the system throughput is proportional to
1/p. Table 9.6 shows that the filtering rate of the 10-finger pattern-based
classification is significantly higher (and therefore less efficient) than the
filtering rate of an ideal classification that would equally divide the space in
homogenous classes.

Some techniques exist to refine the pattern-based approach, such as the
sub-level pattern classification and the use of ridge count between cores
and deltas. However, the classifications presented here are not the only way
to achieve the objective. Other approaches continue to be the subject of
research such as that presented by Lumini et al. [16] or the one developed
by SAGEM. These offer as an alternative to the previous exclusive classifica-
tions an approach that is called continuous. Their use also depends on the
type of the system (forensic or civil) and the nature of the data: fingerprint
image or latent print. The many features used to describe a fingerprint
(1680 in [16]) are reduced to five using the Karhunen–Loève transform
based on a principal component analysis. In this small vector space, it is
easier to extract from the database all references that are close to the finger-
print being identified. In fact, for a given threshold ρ, we compute a subset
Sρ(F) of fingerprints in the database for which the matching distance to the
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One finger Two fingers Ten fingers

5 52 = 25 510 = 9,765,625

Table 9.5 Number of possible classes in relation with the number of fingers.

Typical filtering rate
Ten fingers (pattern-based, five
classes, manual classification)

Theoretical filtering rate
Ten fingers (five classes, Assuming
homogeneous distribution and no
correlation between fingers)

P 0.02 0.1024 × 10–7

Table 9.6 Effect of the correlation of pattern distribution between finger on the filtering rate (see
also [19]).



search print F is below ρ. Sρ(F) can be considered as the continuous class of
F. This system is parametrized by ρ whose value is a compromise between
speed and low error rate. Its value should be small to obtain small subsets
Sρ(F), leading to a high matcher throughput. It should be high to have a low
error rate to avoid having the reference corresponding to F fall outside
Sρ(F). As for the previous static classification approach, the continuous
approach is characterized by its filtering rate.. However, this continuous
processing is more complex and Equation (9.13) cannot be applied.

In conclusion, classification is the primary way to reduce the number of
required comparisons in a database search for the identification of a fin-
gerprint. We include here all means to achieve this task, and whatever the
algorithm, the common feature is a compromise between increased
throughput and decreased accuracy. Tuning a large-scale system is funda-
mentally a compromise between throughput and accuracy, and classifica-
tion is one way to achieve this compromise.

Classification usually does not improve the accuracy of the system
because the comparisons avoided by the screening process would also have
been rejected by the matcher. Use of classification concentrates the
matcher effort on the reference fingerprints that have a shape close to the
search fingerprint. Finding an optimal classification approach not only
depends upon the desired filtering rate, but also on the available data. For
example, classification of a sample can involve the images of multiple fin-
gers (as many as 10) from the same individual record, even though the final
match comparison is done on fewer fingers. The impact on the accuracy of
the system by the filtering process is no longer so obvious. At this level of
analysis, classification is just another parameter of the matching sub-
system – a trick used inside the system to accelerate the search. Classifica-
tion allows the introduction of the extra information contained in the
fingerprints available in an individual multiple-finger record that are not
used directly in the matching process, thus improving the final accuracy of
the search.

Table 9.7 summarizes the different cases and the possible impact of these
classifications on the system.

9.3 Conclusion

We have seen that extrapolation of performance is a difficult problem and
must be considered very carefully. In particular, it is easy to misuse equa-
tions, models and mathematics to arrive at wrong conclusions. We have
tried to present here the dangers of simple extrapolation and have given
four methods to overcome them. No method is 100% reliable and we
strongly recommend the use – and consolidation – of at least two of them to
arrive at a robust outcome.

Table 9.8 lists the advantages and disadvantages of the four methods.
If the available databases are large enough, the first method should be

employed. The second method is often used for a first approximation or to
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Classification
method

Impact on
performance

Advantages Drawbacks Note

Pattern-based
approach

Increase system
throughput

Does not decrease the
overall accuracy of the
system

Accuracy
improvement is
possible in some
specific cases: Latent
images, more fingers
used during the
classification than
during the matching
etc.

Compatible
with human
rules (an
operator can
manually
classify low
quality
fingerprint
images or
latent images)

Filtering rate
limited by
the a priori

definition of
fingerprint
classes

Difficult to
implement
and follow
human rules

Mostly used
in forensic
systems

Usually
required
when latent
images are
managed in
the system

Continuous
approach

Small filtering
rate

Manual
classification
is not
possible

Mostly used
in civil
systems

Table 9.7 The possible impact of classifications on different systems.

Method Advantages Disadvantages

1. Extrapolation
from experiences

Results are very accurate if test
conditions are close to real
ones.

It requires large databases and
extrapolation of the results
becomes uncertain when
carried out far away from the
test conditions.

2. Simple
extrapolation

Very simple to compute, it
quickly provides an indication
of the performance that, which
can be reached by the system.

This method is not very precise
when the number of samples is
not sufficient to estimate the
tail of distribution functions
(principally impostor).

3. Extrapolation
with extreme
value

More precise than the previous
method when the number of
samples is not sufficient to
estimate the tail of distribution
functions.

The distribution functions must
verify some theoretical
hypothesis (see [6]).

4. Extrapolation
when the
distance can be
modeled

This method provides the most
accurate estimations.

The distribution function of the
matching distance must be
known. This only happens in
particular cases. Some
approximations are generally
required in order to model the
matching distance.

Table 9.8 Advantages and disadvantages of the four methods.



give a general trend. Extreme value is generally used to get a more precise
estimation, and method 4 is used when the distribution is explicitly known.

We have also seen that classification is a useful tool to address large-scale
system design. It can improve both the system throughput (when used as a
tuning parameter of the matching process) and the overall system accuracy
(when adding extra information from prints not used directly in the
matching process).

The techniques presented here have been used to design and tune large-
scale systems which are operational today. These systems efficiently
manage several tens of millions people and throughput rates as high as sev-
eral tens of thousands of searches per day. Such experiences show that even
larger biometric systems (hundreds of millions) are feasible. In the future,
the combination of several biometric techniques will further improve the
accuracy and performance of such large-scale systems.

Appendix

A.1 Estimation of FMR1:N(x) Using Extreme Values

Let X XN1, ,… be N independent and identically distributed (i.i.d) random
variables whose distribution function is F. We denoteY X XN N=max{ , , }1 … .
If F(x) is not a function of N, we have:

lim [ ( )]
( )

N
NF x

F x

→∞
=

=⎧
⎨
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0 0

1

if

otherwise
(9.14)

This result is not interesting, but it could be possible to find a series ( , )a bN N
such as:

for all x, lim [ ( )] ( )
N

N N NF a x b G x
→∞

+ = > 0 (9.15)

The function G is still unknown, so to find it let us denote X XNn1, ,… as a
set of random i.i.d. variables andY X Xi

N
in in n= + −max{ , , }… 1 ; then:

Y Y Y X XN N
N
N

Nn= =max{ , ..., } max{ , ..., }1 1 (9.16)

This implies that when N goes to the infinity the function G verifies:

G a x b G xN N N( ) [ ( )]+ = (9.17)

The form of the functions able to follow this equality is:

G x x( ) exp( exp( ))= − − or G x x( ) exp( )= − α (9.18)
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This leads to the approximation that the distribution function of the vari-
able max{ , , }X XN1 … asymptotically tends to:

for x > u, G x
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A.2 Use of Extreme Value in a Concrete Case

We still assume that { , , }X Xn1 … is a set of i.i.d. variables distributed
according to the distribution function F. The previous section considered
the maximum of these variables. In this section, we focus not only on this
particular value, but also on all values which are close to the maximum, or
more precisely, the peaks over threshold (POT). The theory of extreme
value shows [6] that if F lies in the domain of GPD (Generalized Pareto Dis-
tribution; see Equation (9.10), then:
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, FN(x)

is the empirical distribution function of the impostor distance.
If c < 0, the tail is bounded, and unbounded in the contrary case. Parame-

ters a and c are estimated with the peaks over the threshold u. The
threshold u must be chosen low enough to keep enough peaks to make the
estimation relevant, but high enough to keep only peaks. The estimation of
both parameters a and c needs to sort the set { , , }X Xn1 … by increasing
order. This ordered set is denoted as { , , }, ,X Xn n n1 … . First, we choose k such
that

(9.21)

The following expression [4] gives the estimated values for a and c:
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The parameters a and c are generally estimated for different values of the
threshold u and chosen as the average of all the obtained results.

These results are applied here to a particular case: 10,000 matching dis-
tances are computing between 10,000 different sample-reference pairs. The
matching distance lies in the interval [0, 17.6] (see Figure 9.6). The parame-
ters of Equation (9.11) follow for different values of u: see Table 9.9.

With the estimation of the parameters a and c, Equation (9.11) gives a
continuous relation between FMR1:1(x) which is used to find two
thresholds:

� The threshold for which the error rate FMR1:N is below 1% with N = 106.
� The threshold for which the error rate FMR10:N is below 1% with N = 106.
� Both thresholds are estimated on the 10,000 random variables and com-

pared to the true thresholds (Table 9.10).

These values could not have been found without the extreme value theory
because they are superior to 17.6, which is the maximum reached by the
10,000 variables used to make the extrapolation.
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u 12 13 14

a 1.500 1.622 1.823

c 0.126 –0.017 –0.332

Points used to make the estimation 22 12 6

Table 9.9 The parameters of Equation (9.11) for different values of u.
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Figure 9.6 The graph shows the tail of the impostor distribution of the distance and its approxi-
mation (dotted line) by the method of extreme value for u = 13, a = 1.622, c = –0.017.



A.3 Glossary

Accuracy

Accuracy is related to the quality of service provided by the system, as the
user sees it. For a 1:1 comparison(verification), accuracy is measured by
FMR or FNMR. For a 1:N comparison (identification), accuracy depends
upon the type of application. For access control, accuracy is provided by
both FMR and FNMR, as for 1:1 comparison. For forensic applications,
however, the aim is to retrieve the relevant candidate when the applicant is
already in the database, even if a drawback is to often retrieve false candi-
dates. In this case the visual verification step efficiently filters the false can-
didates and, consequently, the FMR is not very important. Then accuracy
concentrates on the “miss” cases and is computed as (1 – FNMR).

Biometric Data

Biometric information acquired from an individual. It is typically a set of
one or several fingerprints, irises, face images etc. Most systems today use
several data items from the same technology, typically two or more finger-
prints, or two irises. To further increase performance, multi-biometric sys-
tems are being researched (e.g. combining fingerprint and iris or face).

Classification

Classification is a mathematical technique aimed at organizing a priori a
set of data in consistent subsets or categories – named classes. A search
record is then compared only to the reference records belonging to the
same “class”, and not to the whole database.

Extrapolation

Since extensive testing is often not possible, or too expensive, before com-
pletion of the system design, the issue of estimating system behavior from
limited, off-line tests is important. Inference of full system behavior based
on such limited test results is referred to as extrapolation.
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N = 106 First x verifying
FMR1:N(x) < 1%

First x verifying
FMR10:N(x) < 1%

True thresholds 32.9 21.2

Thresholds estimated by extreme
value

29.6 20.9

True rate FNMRk:N(x) for the
estimated threshold

5.5% 2.8%

Table 9.10 Comparison of estimated and true thresholds.



Failure to Enroll (FTE) Rate

The failure to enroll (FTE) rate is the ratio of persons for which enrollment
has not been possible. This typically happens when the quality of the bio-
metric data is too poor.

False Match Rate (FMR)

For a 1:1 comparison, the False Match Rate (in this case identical to the
False Acceptance Rate) is the ratio of searches that result in the system
accepting an applicant who should have been rejected. For the 1:N compar-
ison, the FMR is a measure of the “selectivity” of the system, i.e. the ratio of
searches where at least one candidate is found by the matching subsystem
whereas the person was not in the database.

False Non-Match Rate (FNMR)

For a 1:1 comparison, the False Non-Match Rate (in this case identical to
the False Rejection Rate) is the ratio of searches that result in the system
rejecting an applicant who should have been accepted. For the 1:N compar-
ison, the FNMR is the rate of “miss” cases, i.e. the ratio of searches where the
applicant was not found and retrieved as a candidate by the matching sub-
system, whereas the applicant was already in the database.

Filtering Rate (FR)

This notion relates to limiting the portion of the database to be searched
based on some criteria. This is the first step for performing a 1:N search.
The FR is the percentage of the reference database actually compared to the
search record. The lower the FR, the more effective is the filtering approach
(provided that the accuracy is constant).

Identification and Verification

The 1:1 comparison (Verification) is based on an absolute threshold, the
value of which is tuned according to the type of application and to accuracy
expectations. The 1:N comparison (identification) is based on filtering,
sorting and dynamically adjusted thresholds. It should be noted that the
larger the reference database, the more effective are the dynamic
thresholds.

Matching Subsystem and Matching Distance

A matching subsystem performs a comparison of a search record against a
database of reference records. For each pair of search–reference records, it
computes a matching distance correlated to the probability that these two
records come from the same person. Reference records are then sorted
according to that distance and the matching subsystem returns the list of
the “closest” records.
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Reference Record

A reference record is an individual record – including biometric data – that
forms part of the data already registered in the database.

Search Record

A search record is an individual record – including biometric data – that
has been acquired for comparison to data already registered.

Throughput

Throughput is directly related to the system’s capacity for processing
searches in a given amount of time. Usually, throughput is defined as the
number of queries processed per day, a query being a 1:N identification
search based on two fingerprints or a latent search for crime-solving pur-
poses etc.
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10Biometric System
Integration

Julian Ashbourn

Much of the literature on biometric system design (as opposed to algo-
rithmic, hardware or test design) has focused on system error rates and
scaling equations [1–5]. In this chapter, I would like to step back a bit and
ask “What are the operational goals and requirements of the system?” It
sounds obvious, but before one can design and implement a successful bio-
metric system, one must have a crystal-clear view of the requirements and
how the operational processes will fit within the existing business pro-
cesses and structures [6, 7]. It is tempting to get carried away with the tech-
nology and think of all the things we could do with biometrics and related
technologies, when really we should concentrate on what we need to do in
order to satisfy the requirements at hand, identifying how and where
biometrics will be used to support the overall objective.

10.1 Understanding, Describing and Documenting
the Requirements

The first step then, is to identify and clearly describe the problem. If we are
considering the use of biometrics, then part of the problem presumably lies
in personal identity verification. It would help also to check our under-
standing of the current process for identity verification (if one exists) and
to document this accordingly. We can then examine this process in some
detail and identify precisely where and how we can integrate biometrics, or
indeed, redesign the process from the ground up if required. We shall
assume for the purposes of this chapter that a sound business case has
already been made for the adoption of biometrics and any supporting tech-
nologies required for the application. I stress again how important it is to
start off with a clearly identified and documented requirement. It is sur-
prisingly easy to lose sight of the original objective when evaluating inter-
esting technologies, and end up with a cleverly designed system which fails
to deliver the fundamental requirements.

Another item to consider in this context is exactly how we describe and
document those requirements. Naturally this is important if we intend to
issue an RFI (Request for Information) or RFP (Request for Proposal) to sys-
tems integrators and/or biometric vendors to help us with our application.
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One perennial problem in this respect is that end users are obviously close to
their own operation and will describe the situation in a manner which makes
sense to them, but which may not be quite so clear to the person developing
the application. Add a systems analyst or consultant into the mix as an inter-
mediary, and you have a wonderful opportunity for misinterpretation, which
fate usually exploits to the fullest. This situation may be further compounded
by each entity speaking their own special dialect and associated jargon
according to where they sit. What is needed here is a clearly understood
methodology which can be used by all concerned to describe both opera-
tional process and fundamental system design, in an unambiguous manner
which can be understood and used throughout every stage of the project.
Such methodologies are usually referred to as modeling languages, and there
are existing techniques available within the broader IT sphere which can
be used to good effect in order to describe your biometric requirement and
subsequent system design [8, 9]. Indeed, you may already be using such a
methodology within your organization. This would allow you to clearly
describe  and  document  every  aspect  of the  application, with  minimum
fuss and in a manner which is easily understood by all concerned. In addi-
tion, the information you produce at this stage can be used throughout the
project and beyond for training purposes and subsequent support and
maintenance.

In understanding and documenting the requirements, it is also impor-
tant that you capture all relevant views without making assumptions
around either existing processes or the envisaged acceptance of the pro-
posed application. Too often, biometric system integrators have proceeded
without a thorough understanding of complex and well-developed existing
processes. For example, if you are considering a system for prisons, then
ensure that you closely involve the prison officers themselves, and under-
stand how they work, how existing systems work and what their concerns
are. If you are considering a system for airline check-in or immigration
control, then work with the check-in clerks, immigration officers and local
systems support personnel and understand the relevant issues in their
operational environment. If you are considering a system for banks, speak
with some local branch staff and understand the sort of problems they
encounter within their day-to-day activities. If you are considering a
system for network access control, work with the system administrators
and understand how they maintain and use the systems architecture. And
most important of all, speak to the prospective users. When you have
spoken to the users, speak to some more users. Time spent gathering and
understanding all the relative views at this stage will be time well spent, as
it may help you to avoid blind alleys as you design and configure your
processes for the new application.

We have labored the point a little, but it is absolutely essential that we
start off on the right foot with a crystal-clear understanding of the require-
ments which can be equally clearly articulated and documented, forming a
solid foundation for future progress as we design the processes and sys-
tems architecture for our new biometric application. It is equally important
that we understand the views of those who will be operating and using the
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system. In all probability, we will learn much from discussion with these
individuals, which might usefully be incorporated in our subsequent
design.

When we have attended to all these requirements, we shall be ready to
consider the operational processes for our biometric application. It is as
well to think through these processes, even at a high level, before we decide
upon the most suitable biometric methodology. Naturally, we shall have to
revisit them later in order to flesh out the detail, but understanding the fun-
damental processes at this stage, and being able to collate them into the
bigger picture, will prove invaluable. This is an area where the use of an
appropriate modeling language will prove extremely useful, as it will help
us to understand the logical flow of activities throughout the system. Once
we have captured the top-level operational processes and thought through
conceptually how our system is going to function, we can turn our attention
to thinking about the most suitable biometric methodology for the task.

10.2 Choosing the Technology

Whenever people gather together to talk about biometrics, the discussion
invariably turns towards the question of performance and to what extent
one methodology has an advantage over another. Indeed, I would be quite
happy to have a dollar for every time someone has asked me “Which bio-
metric is best?” The answer of course is simple. There is no absolute “best”
biometric. Some methodologies have an advantage in accuracy. Some
methodologies have an advantage in usability. Some methodologies have
an advantage in ease of integration. Similarly, different vendor offerings
within the same methodology will often exhibit quite different operational
characteristics. This is especially true with fingerprint readers, where
even the same OEM sensor may be partnered with different software to
deliver different functionality and sometimes different performance
characteristics.

There is of course an optimum choice of methodology and device for a
given application, but how on earth is one supposed to choose the right
combination? Or indeed, should our application be device-independent, or
even methodology independent, allowing for transparency or multiple
choice biometrics? There are various views on the latter, but unless we per-
ceive a distinct advantage in using dual or multiple biometrics, then it is
probably best to stick to one methodology initially and get the system
properly designed and working optimally with the chosen technology. The
lessons learned from such an exercise will stand you in good stead for any
future development.

In terms of where to start, the best place is probably to undertake a
little research of your own into the characteristics of different available sys-
tems and speak with others in your industry sector who have implemented
biometric applications in order to learn from their experience. The choice
of methodology may almost be made for you by the very nature of the
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application you are considering. For example, in a law enforcement-related
application, you may be predisposed towards fingerprints in order to inter-
face with related systems. For call center-related applications, you will nat-
urally veer towards voice verification, and so on. If there is no strikingly
obvious methodology for your particular application, then your choice will
be primarily around usability, resilience, performance and technology
“track record” in similar applications. Performance in this context is about
providing a suitable level of performance for the application at hand, rather
than necessarily looking for the highest available performance. Usability
should in most cases be the primary driver, coupled with a suitable level of
resilience and robustness according to the environment in which the
system will be deployed. This may seem like the opposite prioritization
from that employed with certain initiatives, but the recommendation is
based upon sound precepts and experience. If the final deployed system is
unintuitive in use, or temperamental in its reliability, then absolute perfor-
mance considerations will become academic as users struggle with the
system, in turn causing real performance to plummet, regardless of any
impressive-sounding specifications quoted by the device vendor. There is a
distinction here between theoretical device performance and total end-to-
end realized system performance. The former may be demonstrable in iso-
lation, but the latter will, in reality, be influenced by a host of variables
associated with the user, the environment and other considerations.

In understanding and outlining our operational processes, we would
have looked at items such as transaction flow rate, user populations and the
consequences of incorrect matching (i.e. false matches and false non-
matches). From this we can derive an acceptable performance level, in
terms of both accuracy and transaction speed. Add this to our expectations
of reliability and resilience, and we have the basis for a specification to
compare against available products. However, just having a disconnected
specification is not enough. We must place it into context by clearly
defining the process into which the technology must fit and ultimately sup-
port. In this respect, it would be beneficial to use a modeling language
which will not only help to describe this situation but will also bring clarity
and consistency throughout the whole project life cycle. With a defined
process and qualified performance requirements, choosing the technology
becomes a logical exercise rather than a game of chance, and this point is
stressed accordingly.

Of course, the above needs to be undertaken with due regard to the
underlying systems infrastructure and with a clear view of the biometric
authentication architecture. At this stage, one should ensure that the prod-
ucts and systems under evaluation offer a flexible approach to architecture,
especially with regard to template storage and management. If a given
device can only store templates internally, then its application will be lim-
ited to scenarios where this is acceptable. If a device and accompanying
software allows central template management and storage, but only in a
proprietary fashion, then it may not fit with your organization’s directory
aspirations. We might also consider the security of data passed between
device and host node/PC as well as that passed across the broader network,
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and consider what encryption options are offered. These are the sort of
considerations which must be borne in mind while we get down to the fine
detail of individual device performance.

Having defined the requirement, thought through the processes, decided
upon a suitable systems architecture and settled on a particular biometric
methodology, we can now evaluate the available device options in line with
our requirements. With certain methodologies, these options will be few,
whilst with others (such as fingerprints) the choice may at first seem rather
bewildering. However, we can quickly whittle this down to a short list by
eliminating those devices which cannot meet our architectural require-
ments, or which have obvious shortcomings in other areas. When we have
our short list, we shall naturally want to receive as much pertinent informa-
tion as possible from the vendors in order to understand the different
approaches taken. We should also ask for details of reference sites and not
be shy to make contact with the organizations concerned in order to appre-
ciate their experiences of using the devices and associated systems. This
activity may whittle our short list down even further, until we are left with a
selection of available devices, any of which might fulfill our requirements.
Subject to additional considerations around company stability, device cost
etc., we might usefully ask for sample devices to evaluate in-house as a next
step.

Evaluating devices is a time-consuming activity which needs careful
administration if we are to arrive at meaningful conclusions. Some guid-
ance is given in [10]. The first step is to clearly define our objectives and to
set up a test environment accordingly. This test environment should mirror
as closely as possible the real-world operating conditions of our planned
implementation. We should then identify and confirm our test user popula-
tion, again ensuring that the user profile distribution matches as closely as
possible to the anticipated real-world situation. It will be important to
ensure that users are enrolled consistently into the test systems and that
they understand the operation of the various devices under test. In this
respect, it may be useful to construct an enrollment script (possibly for
each device) which may be followed in each case, irrespective of the indi-
vidual administering the enrollment. The test population will then need to
be advised how many times to use the devices over a defined test period,
and what to do in the case of failed transactions and other errors. If the
devices being tested have an adjustable matching threshold, then this will
need to be set at an equivalent level for each device. It would be useful to
involve the manufacturers in such an evaluation, ensuring that their
respective devices are configured properly and that the results are repre-
sentative. We can then proceed with the test and log the results accordingly.

Having undertaken the evaluation of our short listed devices, we then
need to analyze the results and understand how they might relate to real-
world operating conditions (system evaluation and testing is covered in
greater detail elsewhere in this book and the reader is advised to digest that
information thoroughly before planning a test project). Finally, we shall
arrive at conclusions which suggest the most suitable device for our
planned system. However, this is not quite the end of the story as we also
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need to ensure that the associated software is going to integrate seamlessly
into our own infrastructure. It may be necessary to write additional inter-
faces or software modules and we need to clarify exactly who will do this
and how they will be tested. Manufacturer support will be important in this
context, and may indeed be a contributing factor in your final choice of
device.

10.3 Application Development

Application development may be thought of in two broad and related cate-
gories: firstly, the core application, which is based upon the overall opera-
tional objective, such as a benefits payment system, corporate network
access system and so on; and secondly, the integration of the biometric
authentication methodology. The two are irrevocably entwined and should
be considered together, although the detailed requirements from the devel-
oper’s position are somewhat different. Depending on the precise nature of
the application, it may be that you need two different sets of core skills
within the developers – one developer (or team) which really understands
the core requirement and all of the associated business logic, and another
developer (or team) who really understands authentication, directory
structures and networks. Together, the two developers (or teams) will be
able to create an efficient, scalable application which will serve well into the
foreseeable future. If a suitable application modeling language has been
used to define the original requirements and associated business pro-
cesses, then it will pay dividends at this point, as the development team can
work closely to these documented requirements and further produce their
own more detailed configuration maps with which to document the
development project for archive and standards compatibility purposes.

Taking the first of these tasks, it is important to ensure that the core
application is based upon practical and realizable operational processes. It
is recommended that an iterative approach be taken to application devel-
opment in order to regularly check progress against the original require-
ment with the “customer” within the end-user organization. Such progress
checks have benefits in both directions, as the development team ensures
that it is on track to deliver the requirement and the customer team ensures
that the originally conceived processes are realistic and deliverable. Again,
if a modeling language has been used, such discussions will be streamlined
and efficient and may be captured within additions to the original
documentation where appropriate.

Part of developing the core application will be understanding at which
points biometric identity authentication is required and how best to incor-
porate this functionality. This brings us to the second application develop-
ment area, which we might usefully refer to as the authentication service.
This service will be based upon the necessary architecture, directory, bio-
metric matching engine, data protocols and device operability required to
deliver a biometric authentication “result” to the core application and log
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the transaction accordingly. When this result is received, rules within the
application will be followed according to the result, which may entail the
provision of certain functionality or the display of related messages to the
user and system operator.

Understanding the required functionality and the implications of deliv-
ering it will of course be different for different types of application. For
example, within a corporate network access system, we may be interested in
supplying single sign-on functionality. Within a border control system, we
may be interested in supplying an interactive user environment with high
levels of automation. Within a benefits payment system, we may be inter-
ested in supplying different operator consoles according to role. Within a
time and attendance system, we may be interested in automated feeds to
accounts systems – and so on. It is important that we focus on this core
functionality and ensure that the application is designed to efficiently
deliver the core requirements. This in turn requires consideration of the
underlying infrastructure and whether enhancements are required in
order to support the new application. For example, is our network band-
width adequate to support the anticipated data traffic at peak periods? Do
we have adequate transaction storage capacity? What is our contingency
for network or server failure? Do we need to configure periodic batch oper-
ations for transaction archiving? These fundamental areas need to be
addressed and satisfied before we overlay the biometric authentication
functionality. If the network is slow, for example, this might be viewed by
the user as poor performance of the biometric functionality, when in
reality it has nothing to do with the biometric device or the matching
engine, but is a consequence of poor systems performance elsewhere. As is
often remarked, the system is only as good as its weakest link, and we need
to ensure a consistent level of performance throughout, from the under-
lying infrastructure, through the core application, to the user interface.

Overall, we should not be thinking in terms of a “biometric application”
but rather an application which happens to incorporate biometric authen-
tication functionality. The biometric element is simply a common service
in the same manner as directory services. If the application is poorly con-
ceived and inefficient, it will remain poorly conceived and inefficient,
whether or not biometric functionality is incorporated. We therefore need
to think in terms of a high-performance, efficient, elegantly coded and
properly tested core application as our fundamental baseline. Into this, we
shall incorporate a well-conceived biometric authentication model which
adds minimal operational overhead and interfaces cleanly with synergistic
infrastructural components. The whole system should naturally be vigor-
ously tested under real world conditions and properly documented before
being rolled out as an operational system. There will of course be attendant
user training issues, and it is anticipated that an associated training (and
where applicable, marketing) program will be undertaken as part of the
overall project.

With regard to application development tools and environments, there
currently exists a wide choice of methodologies, from traditional lan-
guages such as C and C++, to more recently popular tools such as Delphi,
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Java, the recently announced Microsoft C# language and recently estab-
lished Borland Kylix. There are a couple of points to understand here, espe-
cially around the deployment architecture and host machine platforms. If it
is not necessary to have cross-platform compatibility within your overall
application (for example use on different hosts such as Windows, Unix or
Linux) then you may or may not wish to use a “portable” language such as
Java. Similarly, your application may or may not be designed as a web-
enabled application based upon front-end browser technology, in which
case the choice of tools you use for the “presentation layer” will be affected.
Lastly, you may or may not need to interface to back-end data sources
which rely upon conventional legacy technology and which will therefore
require the necessary interfaces. Why mention this? There is a tendency to
assume that all current development should be web-based and use associ-
ated tools accordingly. However, depending upon the existing architecture,
there may be some compatibility and related performance issues involved
here. Whilst it is true that many enterprises currently base their networks
around TCP/IP technology, there is no unwritten law which states that you
must use a web browser as the user interface, linked to a web server, which
in turn links to an application server and so on. In some instances, it may
make sense to simply design the application for the best performance
around the back-end data sources and servers, using native drivers and
interfaces wherever possible and designing the user interface around the
most sensible and intuitive user processes, rather than trying to make it fit
a contemporary browser model. Naturally, it is a question of “horses for
courses” and incorporating the longer term view, but these are the sorts of
issue which need to be carefully considered.

10.4 Integration with Existing System Architecture

One element of a biometric project which is often not attended to at the
right time (and sometimes overlooked altogether!) is how the biometric
functionality will integrate into the underlying systems architecture which
supports the enterprise in general. This is an important consideration,
even if the biometric application is conceived as a totally self-contained
entity, with its own access control lists and integral matching engine. In
such a case (which would be unusual) we would still need to understand
where the application is going to sit (on which server), what the capacity
and performance requirements are, and how this deployment will impact
the network. It is far more likely that we shall wish to interface to existing
components such as a central directory and separate the template matching
process from the main application. In this case, we shall need to consider
what sits where, what the data exchange protocols are and how best to
deploy the application elements for best overall performance. The key to
this is to involve the network administrators at an early stage in the project
and ensure that the system is designed in accordance with the overall
network policy and will sit well within the infrastructure.
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An example of where this is important is in the potential interface with
an organizational directory. For example, if the directory is based upon
Lightweight Directory Access Protocol (LDAP) [11], can the biometric
authentication components interface with this? Can the biometric tem-
plates produced by the chosen methodology be stored within the directory?
What is the directory schema, and do you need to add other fields for the
application to use? Who in the organization manages the directory, and
what links exist to other applications which may be affected? Naturally, we
need to consider these details carefully and understand how all this works
in order to ensure that our application will be designed and developed in
the optimum manner.

We must also decide where the biometric matching engine will sit, how it
uses directory information and how it integrates with the core application.
Similarly, as we pass biometric data across the network, is this data
encrypted? If so, where do the encryption and decryption take place and
what impact does this have in terms of transactional performance over-
head? When we understand how all this works, we shall be well placed to
design our system correctly. These issues should be addressed in associa-
tion with our internal network administrators and the biometric vendor in
order to ensure a complete understanding.

In conclusion, there is a tendency for biometric vendors to simply state
“this is how our system works” and expect that the customer organization
will blindly follow this model. Such a model may or may not be sensible for
a given organization, depending upon the existing infrastructure and how
other organizational systems are configured. The more flexible the bio-
metric product is, the easier it will be to integrate into a given application
and existing infrastructure. This factor should be one of the first to be
addressed in our consideration of biometric methodologies and products.
Clearly, if we do not fully understand the architectural and integration
issues right up front, then we are opening the door for potential confusion
and misunderstanding further down the line.

10.5 Templates and Enrollment Management

The biometric authentication function depends upon individual biometric
templates. The better quality the reference template, the better chance of
correctly matching against a live sample. It is therefore important to cap-
ture the best possible reference templates from the user population and
ensure that users provide live samples with high levels of consistency. What
has this got to do with systems design issues, you may ask? Well, it is impor-
tant to provide an intuitive and flexible enrollment process and to decide
upon what is acceptable as an enrollment. We have probably already
decided upon the logistics of storing and handling templates from an
overall systems perspective. Now we need to consider how to obtain the
best possible reference templates. In the majority of cases, user enrollment
will be a facilitated process whereby an administrator will explain the
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procedure to the user and oversee the actual enrollment. But how does this
administrator know what a good enrollment is? Clearly, we need to guide
them. Part of this can be accomplished by a good quality training package
for administrators, resulting in them becoming “expert” users and being
able to impart this knowledge to others at the time of enrollment. But we
also need to help them by providing the best possible system tools.

The first point here is the user interface itself. This needs to be attractive,
uncluttered and intuitive. It also needs to provide a logical sequence of
events and clear feedback messages for both the administrator and user
where applicable. There are also some desirable functionality require-
ments such as:

� The ability to roll back a transaction and start again.
� The provision of a reference metric as to the quality of the captured

sample.
� The ability to immediately undertake a match against the reference tem-

plate and provide a “score” accordingly.
� The ability to search the existing database for similar templates which

would indicate prior enrollment.
� The ability to create a log of enrollments, both within a given session and

overall.
� The ability to capture associated information, such as a photograph.
� The inclusion of comprehensive online help for the administrator.

Having provided such an interface and associated tools, the adminis-
trator needs to know how to interpret what he or she is seeing at the time of
enrollment. For example, if the reference metric for a captured sample is
below a certain quality threshold, then the administrator should cancel the
enrollment and start again, perhaps after providing further explanation
and guidance to the user. The system can of course help in this context by
providing suitable messages according to the result, advising the adminis-
trator on required actions.

Similarly, once the user has enrolled and is undertaking the first live
match, the administrator may, depending upon the matching score
received, advise the user to undertake further transactions before leaving
the enrollment station. Attention to detail paid at this stage will pay divi-
dends later, under real operating conditions, where the quality of results
will be directly pertinent to the quality of reference template and the users’
ability to give consistent live samples. The enrolling systems administrator
thus plays a key part in the success of your project overall and should be
properly trained and supported accordingly.

But what if you are not implementing facilitated enrollment and are
requiring users to enrol themselves, perhaps remotely across the network?
The importance of the user interface and the enrollment process now
becomes critical. We must provide crystal-clear feedback at each stage
which leaves the user in no doubt as to their enrolled status. If we are under-
taking background processes, such as checking for the existence of a sim-
ilar template, then we must decide upon which messages we return to the
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user under which circumstances. We shall also need to supply comprehen-
sive online help for the user as well as a “primer” tutorial to ensure that they
understand the proper usage of the system prior to enrolling. Indeed, we
may decide to actually inhibit the enrollment wizard until the tutorial has
been successfully undertaken. In such a scenario, we shall also have to con-
sider the credentials of the remote enrollee. How do we know that the iden-
tity being claimed is correct and that the person sitting at the remote PC or
terminal is who we thought it was? This may be less of an issue within a
closed loop corporate system where we can exercise an element of control,
but will be difficult when dealing with outsiders. For example, if we were
considering the idea of individuals enrolling into a voice verification
system remotely via the telephone, then what sort of checks should we
impose to confirm identity? If an identity is stolen in relation to our system,
then what is the revocation procedure and who is responsible for any fraud-
ulent transactions? There are some significant issues to consider with
regard to remote enrollment into biometric authentication systems. There
is also the question of covert enrollment and subsequent authentication.
The author does not condone such a methodology and recognizes that
there are some huge systems-related issues associated with it.

Another area for consideration is the security of templates in association
with the application. Templates are directly related to individuals and in
most people’s view are thus regarded as personal data. Whilst the letter of the
law in certain countries is unclear on this point, it might be hard to argue that
a biometric template is not personal data. The argument that you cannot
derive a person’s name from a template may be viewed as irrelevant in some
circumstances. The upshot of this is that, to an organization, there is a moral,
if not legal, responsibility to take measures to safeguard biometric data with
regard to its storage and transmission between system components on the
network. Thus the overall system design must reflect this.

Of course, you may decide not to store templates centrally, but instead to
store the template on a portable token such as a chip card, which the user
may then carry with them and therefore be responsible for. In such a sce-
nario, the user would insert their card into a reader, initiate the comparison
of the presented biometric sample to the template stored on the card, and
then complete the desired transaction. One immediate question is, “Where
exactly is the matching process being undertaken?”. If it is being under-
taken right on the chip card, with the template never leaving the card, then
we can simply focus on the security aspects of the card itself. If, however,
the template is being passed from the card to the host system for matching,
then how are we protecting the template in transit? The issue is exacerbated
if we are using a centrally located matching engine. These are issues which
we must not only understand, but for which we need to define a clear policy.
A user might understandably ask what is happening to their personal tem-
plate information within the system, and we should be able to provide an
unambiguous, clearly worded answer which leaves no doubt as to the use
and storage of this data. Being open and forthright on this issue is very
important and will become more so as the use of biometric authentication
increases.
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Hopefully, this section has impressed upon the reader the need to care-
fully consider the creation and management of biometric templates. It is a
topic which cannot be over-emphasized. Problems in this area have the
potential to not only severely affect overall systems performance, but may
also lead to complex user relationship issues. It is suggested that organiza-
tions contemplating the use of biometric authentication within their pro-
cesses and systems, pay particular attention to templates and develop a
clear policy around their storage and use.

10.6 Understanding User Psychology

What is the key component within a biometric authentication model? Is it
the reader? The user interface? The matching algorithm? The host applica-
tion? Or is it perhaps the user? Considering the importance of users and how
they interact with the system, they seem to receive relatively little attention
from some biometric systems designers. Without users, the whole thing after
all becomes somewhat academic. Users are more than mere entities which
interact with the system. They are thinking, breathing, individuals who have
subjective views and react to events in an individual manner. They also come
in all shapes and sizes and have differing levels of dexterity when using
devices. Furthermore, they have differing levels of interest in technology and
correspondingly different perceptions around the use of emerging technolo-
gies such as biometrics. Accommodating such diversities within the user
population requires some thought.

Let us consider for a moment the scenario wherein a user has used the
system successfully a number of times, but now encounters a problem. Let
us assume that this is a bank ATM machine from which the user legiti-
mately wishes to withdraw some money, and that there is a queue of three
people behind the user, all waiting to use the machine. How will the user
react? There is no single answer. In fact, there may be almost as many
answers as there are users. A rational user who has an understanding of
technology and a pragmatic disposition may react very calmly, take the
time to read and digest any feedback messages and perhaps try again or
seek manual assistance according to the situation. An irrational user who
has no sympathy towards technology and a quick temper may become quite
agitated and perhaps even violent towards the machine and generally abu-
sive. There are a host of variables between these extremes and we must
accommodate them all in one way or another.

One of the important considerations in this respect is the provision of an
elegant fallback procedure should an error occur, ensuring that the user is
not unnecessarily inconvenienced or disenfranchised. Naturally this
should be accompanied by a clear explanation and step-by-step instruc-
tions for the user to follow in order to deliver the service. Of course, it may
be that the user in this case is an impostor, attempting to claim someone
else’s identity and withdraw money. If this were the case, then the indi-
vidual, on being refused, would probably wish to exit discreetly from the
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situation as quickly as possible. It is the genuine user who, for whatever
reason, is having difficulty with the biometric authentication, that we need
to think carefully about. Some users, for example, will be inconsistent in the
way they offer their live biometric. Even with a matching threshold set very
low so as not to reject valid users, these individuals may still have difficulty.
How we handle such a situation is very important. It is no good saying
“Well, it works for everybody else” if it does not seem to be working for this
particular individual. It would also be inappropriate to jump to the conclu-
sion that the user is not using the system properly. There may be a perfectly
valid, but unforeseen, reason why the template is not being matched. Even if
the problem is one of user inconsistency, we need to find a way to gently
suggest that they would benefit from a little further instruction. A trained
administrator will have no difficulty in handling such a situation, pro-
viding of course that the administrator is present. In an unattended situa-
tion, we need to rely on system prompts and interactive feedback to guide
the user, and this requires careful consideration and design if we are to
retain user attention and associated loyalty towards the scheme.

Understanding user psychology is also extremely important when
designing the operating environment. First of all, the environment itself
must be perceived as an attractive and welcoming one, within which the
user may interact with the system in an unhurried and personal manner.
There are many related issues here, from color schemes, lighting and
signage to available space and relative privacy. If the user is carrying bags,
or is perhaps escorting an infant, then they need sufficient space in which
to operate the device. Similarly, if they are having difficulty with the proce-
dure, or are perhaps just unfamiliar due to non-habitual usage, then they
may not wish to be too conspicuous whilst undertaking their transaction
and will require some space and time accordingly. It is important that users
do not feel under pressure in this respect and that they are able to concen-
trate on undertaking the transaction within a comfortable environment.
The likelihood for transactional errors is in some ways proportional to the
pressure a user feels under whilst making the transaction. Errors lead to
more pressure, which leads to a higher propensity towards errors, and so
on. This sounds obvious, but it is a factor often overlooked in the design of
biometric pilot schemes and even implemented systems.

Another area where understanding user psychology is important is in
the initial acceptance of the system. If users feel that their views and wishes
have not been taken into account, or if they simply haven’t been consulted
at all, then there may exist a level of reluctance to use the system in situa-
tions where use is optional. Similarly, if communication has been poor and
questions around data security are not perceived to have been properly
addressed, then this can also have an impact. Obviously, there is also the
issue of benefits for the user should they decide to use the system. If such
benefits are vague and ambiguous, or if the major benefit is perceived to sit
squarely with the system operator rather than the user, then enthusiasm
towards the system will be capped. Within the context of a new application
initiative, the last thing we need is to start off on the wrong foot with a luke-
warm response from prospective users. It is therefore important that we
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consider the application from a user perspective, identify some real user
benefits and ensure these are incorporated in practice. It is then important
to market the system enthusiastically, taking care to clearly address any
user concerns and to be open and honest about the system architecture and
data privacy issues. Even in an application where users are absolutely
required to use the system, such as a prison or benefits payment applica-
tion for example, it will pay dividends to spend some time understanding
the user psychology of the target user population and designing the system
to be as intuitive and friendly as possible. It will also pay dividends to con-
figure and implement a proper education and training program to ensure
that users understand the system and how to use it effectively.

The last point to make about user psychology is the affect it can have on
realized system performance. When people are considering biometric
devices, they tend to draw attention to quoted performance figures which
may differ within fractions of a per cent between different vendor specifi-
cations (how these specifications were arrived at is another matter
entirely). This is ironic in a way, as the biometric device performance is
simply one factor within many which will affect overall system perfor-
mance. As already noted, the back-end database, network performance and
reliance upon associated components will all contribute to the overall per-
ceived transactional performance. Undoubtedly major contributors
towards transactional performance are the users themselves and how they
personally interact with the system. If you are concerned about published
error rates of around one per cent or less, allow me to place this in perspec-
tive with the suggestion that errors arising from varying user psychology
and interactive response may be measured in several tens of per cent in
some cases. In overall throughput terms, this may have a significant affect
on the system and its perceived success. It therefore makes sense to fully
consider user psychology and all the user-related issues as an integral part
of the biometric project. Allow me to stress once more that this is non-
trivial. Sufficient time and resource should be dedicated to this area if we
are to realize a successful implementation.

10.7 Fine Tuning the System

As with any system, the original implementation may require a little subse-
quent fine tuning in order to realize the best performance. With respect to
biometric systems, there are a number of ways to effect such a tune-up as
the system is introduced and we start to analyze transactions and overall
performance. Some of these may be simple hardware-related configuration
adjustments, some may revolve around software code tweaking and some
may be related to users and ongoing user training.

Perhaps the most obvious tuning is setting the threshold for the
matching algorithm. Many systems have a range of tolerance in this
respect, within which we may bias the system towards the likelihood of
increased false matches or false non-matches accordingly. Why should we
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be concerned with this? It may initially be considered that we simply want
the highest accuracy available from the system (rejecting impostors with a
very high probability), but adjusting the matching threshold for this char-
acteristic may result in unacceptable levels of false non-matches, with valid
users being rejected by the system. Under the assumption that genuine
users greatly outnumber the occasional impostor, we should generally wish
to lower the probability of false non-matches so as to reduce the total
number of instances of rejected customers, especially in the early days of
operation. This will allow users to operate the system successfully and
build a level of confidence accordingly. Later on, we may wish to tighten the
threshold a little in order to achieve the best compromise between the like-
lihood of false matches and absolute number of false non-matches. In most
systems, we will never be able to know how many impostors are ultimately
successful in deceiving the system. Estimation of that number will require
both knowledge of the probability of a false match and a good guess at the
number of impostors attempting access.

The point about rejecting valid users (false rejection) is an important one.
Naturally, in a commercial situation, such as an application for bank ATM
usage, it will be vitally important not to reject a valid and valued user unnec-
essarily, as repeated instances could lead to customer dissatisfaction and
perhaps even brand switching. It is perhaps no less important in a non-com-
mercial situation, where users might become confused as to the correct oper-
ation of the system if they are continually rejected by it, necessitating a
higher than necessary degree of support and administration, not to mention
the effect on user psychology and individual perception of the application. It
is acknowledged that there are some who would argue the opposite case: that
they do not mind how often valid users are rejected, as long as impostors are
not accepted. Naturally, there are certain high-security applications where
this might seem like a reasonable approach, although one is inclined to sug-
gest that it is all relative to the implications of operating at such levels and
what procedures are in place to support such an operation, in terms of
enhanced training, administration support and so on. Even in such extreme
cases, there is probably an optimum threshold setting which strikes an
acceptable balance between usability and security, whilst acknowledging the
risks associated with opportunist impostor attempts as opposed to more
determined attempts to compromise the system. Such a risk assessment is
outside the scope of this chapter and would in any case be particular to the
application under consideration, but one might suggest that this is another
area where understanding user psychology plays an important part.

Adjusting the biometric matching threshold represents an opportunity
for fine tuning the overall system, providing that this facility is available
with your chosen biometric device and systems infrastructure. Other sys-
tems-related areas exist for fine tuning the overall network performance,
which can be monitored in conventional ways in order to understand peak
load windows, available bandwidth and so on, as well as identifying any
bottlenecks due to specific components or the use of common services.
This analysis is best left to network administrators who will understand
the specific architecture involved and the inherent opportunities for
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enhancement. Perhaps a less obvious network-related area in certain appli-
cations is the physical deployment of biometric points of service and the
associated throughput in terms of transactions. If bottlenecks are found to
exist at certain times simply due to the number of persons requiring the
service, then we may wish to consider the addition of further points of ser-
vice or biometric “stations” in order to distribute the load. Load balancing
at the back end of the system, around directories, databases and matching
engines, is unlikely to be a problem with all but the largest of operational
systems, providing of course that the systems infrastructure has been
properly designed.

The opportunities for software fine tuning will depend upon the applica-
tion in question, its specific architecture and who provided it. If the appli-
cation has been developed in-house, then naturally we shall have local
expertise to manage and optimize the code. However, it is not just a ques-
tion of optimized code. There may be alterations required to the user inter-
face, for example, in order to make operation more intuitive. Or perhaps the
functional process might be altered in order to effect an operational
improvement, or updated drivers or interfaces installed to facilitate better
integration with other components. The key point here is to be fully aware
of the systems architecture, the functional design of the software and
exactly what is happening “under the hood” inside the equipment. Without
this information, we shall be at a loss to know whether subsequent alter-
ations are likely to effect an improvement or otherwise. If the application is
brought in from an external vendor, then we may or may not have such
detailed information, depending upon how we negotiated with them
during the procurement phase. In this respect, the use of a modeling lan-
guage and associated methodology would ensure at least some under-
standing of systems architecture and functionality, which could be further
exploited as the system is fine tuned and bedded in. In most cases, scope
will exist for incremental system software tuning in order to obtain the best
performance within a given infrastructure, but it is an area which should be
approached with caution if the software was developed externally.

Assuming that the physical implementation of the biometric system has
been constructed and configured for optimum performance and stability,
there may still be much we can achieve in the area of ongoing user training.
Typically, users may have received an introduction to the system and its
operation at the time of enrollment and may have undertaken their first few
transactions under supervision in order to ensure consistency in their pre-
sentation of the biometric sample. As time moves on, individual users may
or may not retain this understanding and may have a greater or lesser
opportunity to practice their operational skills. Infrequent users may be
more or less consistent in their approach to transactions, with instances of
errors being equally varied. If this situation prevails, there is much we can
achieve by having periodic ‘refresher’ training sessions and workshops
where users can air any concerns they might have and be reinstructed as to
the correct operation of the system. Such an initiative can have a significant
impact on the overall system performance realized within a typical appli-
cation. Naturally, good communication plays a role in this also and we
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should ensure that an ongoing communications program is included as
part of the ongoing biometrics project.

In conclusion, there is much we can do to fine tune our system after it has
been installed and when we have the benefit of hindsight as to actual trans-
actions and usage. There may be some obvious problem areas that need to
be addressed, or there may be an opportunity for more subtle tuning as we
move forward, both with the system and its users. In any event, we should
be open minded as to the potential of improvement through tuning, and
not be shy to look into this area. It just might make the difference between
overall success or failure for our biometric project.

10.8 Ongoing Management

Having designed, implemented and fine tuned our system to the point at
which it is operating well and everybody is happy with it, we still have an
ongoing requirement for overall management and support. The system will
need to be maintained, individual biometric devices may need to be
replaced, users will come and go, organizational requirements may change,
and so on. The first principle to establish in this respect is that of “owner-
ship”. The system must have a clear owner or sponsor who is responsible
for it on an ongoing basis and who makes any decisions necessary for its
support and maintenance. This authority may indeed choose to delegate
some of the day-to-day operational issues, but must be ever-present as the
final arbiter when decisions need to be made with respect to the applica-
tion. Furthermore, this authority must be visible in the form of an indi-
vidual who is an enthusiastic and effective champion for the application
overall. They must have a passionate interest in the system and its users and
live and breathe the application day by day. They must have an equally pas-
sionate interest in its success and be ready to vigorously defend the cause in
the face of competing organizational resources if need be (whilst obviously
understanding the bigger organizational picture). Without this level of
commitment, the ongoing success of the system will be open to question.

Part of this commitment will of course manifest itself in the day-to-day
operation and management of the system. In turn, part of this will be con-
cerned with actual systems support and fallback procedures in the event of
failure, and part will be concerned with producing the required manage-
ment information. Yet another part will be concerned with managing users
and user-related issues. The overall manager must therefore have not only a
strategy, but a process methodology for handling all situations that may
arise within the real operating scenario. They must also interface with
other elements of the organization as appropriate to ensure that the appli-
cation is meeting the broader objectives and that all potential efficiencies
and opportunities are realized. In practice, this authority might consist of a
team or project office which has a diverse and specialized skill set in order
to meet the varying requirements, led by the enthusiastic champion
referred to earlier. Together they will manage the system on an ongoing
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basis and handle any related situations as they arise. Naturally, all this is
rather “top level” and the actual tasks and reports will depend upon the
precise nature of the application in question, although there are perhaps
some generic elements for inclusion, such as the following:

� A user and application help desk function.
� An ongoing communications function.
� A systems maintenance and support function.
� An application futures board or steering group.
� A general administration and reporting function.

Depending on the nature of the application there may be additional ele-
ments around ongoing supplier relations and external liaison as well as vari-
ations on the points noted above, but suffice it to say that this is an important
area which needs to be adequately supported. It is also worth bearing in
mind that users of biometric systems are likely to have more questions than
would typically be the case for familiar office-type applications and that
these will all need to be dealt with in a knowledgeable, friendly and authori-
tative manner by suitably qualified individuals. There is obviously a cost
associated with such levels of support and this factor should be taken into
consideration within the original business case for the application.

One element of ongoing management which is perhaps worth singling out
is that of performance tracking and analysis. As part of our original design,
we will have no doubt incorporated a transaction database which captures
each transaction event. It would be most useful if this database, in addition to
capturing the fundamental elements, such as user name, point of service,
time and date, and result, also captured a matching score for each transac-
tion and, where applicable, the relative threshold setting. This information,
together with the more usual system performance metrics, would enable us
to extract a wealth of practical information as to how well our application
was really working and what, if any, trends are emerging around errors. For a
given individual, we would thus have not only a usage pattern including suc-
cessful transactions and errors, but a means of analyzing the matching
scores over time and understanding how the user is adapting to the applica-
tion or otherwise. If certain users are experiencing higher than average error
rates, then we shall at least have some pertinent information to work with
and should be able to identify the cause. For example, erratic and wildly
varying scores would indicate inconsistency in use. Consistently poor scores
might indicate an inappropriate threshold setting or a poor quality reference
template. The culmination of this information over time will help us become
expert in understanding and administering the biometric system.

10.9 Related Issues

Several times in this chapter we have referred to the use of a modeling lan-
guage within the process and systems definition context. It is perhaps
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worth expanding on this idea a little and explaining some of the associated
benefits.

One of the potential problems with any application development lies
with the potential for misinterpretation of ideas and requirements. This is
hardly surprising when one considers the typical diversity of the individ-
uals involved and their particular spheres of operation. For example,
within the business or operational area there will exist individuals who
have a good grasp of the current processes, but may not have an under-
standing of how technology may be applied in order to improve them. They
may call in a business analyst to help them shape their thinking, who in
turn may call in a systems analyst in order to understand the current infra-
structure. Both of them may be liaising with an external consultant who is
defining an overall vision. The consultant will be liaising with one or more
technology vendors with regard to specific components, and somewhere in
the mix will be the application developers, who in turn will be liaising with
the infrastructure and network architects. The trouble is, all these individ-
uals tend to speak a different language, complete with a particular jargon
which is typically incomprehensible to those outside that particular
sphere. The chances of the original requirements surviving intact down
through all these layers and being translated into an efficient application
which fulfills all of the original objectives whilst remaining universally
understood and accepted can be pretty slim with any complex application
development. If you add to this mix the relative lack of detailed awareness
around biometric systems, their precise operation and the issues involved,
then you have a golden opportunity for misunderstanding which the law of
Murphy will vigorously exploit. One way around this is to utilize a clear cut
methodology throughout the project in order to ensure a common under-
standing at each key point and be able to articulate and document pro-
cesses and systems functionality accordingly. If the same methodology can
be used by all those involved with the project, then we can all start speaking
the same language and ensure that the understanding does indeed cross the
various boundaries. This is the general idea of using a modeling language.

Such a language may typically be used for:

� Defining the current processes.
� Defining and specifying the requirement.
� Conceptually designing and describing the new application.
� Defining the detailed functionality of elements within the new

application.
� Defining the existing infrastructure.
� Designing the new application systems architecture.
� Defining relationships and dependencies between components.
� Defining logical operational flows.
� Scoping the software development.

In addition to the above, it may be useful to incorporate the modeling lan-
guage methodology and diagrams into the RFI (request for information) and
RFP (request for proposal) documents for procurement purposes. This will
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leave vendors and consultants in no doubt as to the requirements whilst
introducing them to a way of working which is understood within the orga-
nization, thus facilitating ongoing discussion and program management in a
structured manner. Much time can be saved in this respect, helping to keep
overall projects costs down whilst promoting efficiency and clarity
throughout. A key benefit in this respect is the portability of diagrams and
associated documentation from the front line operational area right through
to application development and the ongoing support function. Indeed,
depending upon the application, such documentation may also be useful for
marketing and training departments in understanding the system function-
ality. Lastly, such an approach also ensures a well-documented archive of the
original idea and subsequent development of that idea through to applica-
tion development and implementation.

Organizations may already have a modeling language policy and preferred
methodology with which they are familiar, in which case it makes sense to
utilize it accordingly. If this is not the case, then there exists a lightweight,
easy-to-use modeling language specifically designed for biometric and
related applications named Bantam [12], which would be well worth evalu-
ating in order to gauge its usefulness within the proposed biometric project.
The Bantam methodology includes the graphical notation and standard doc-
ument templates along with RFI and RFP templates and other information
and utilities to help bring clarity and consistency to this important area.
Unlike some methodologies, it covers both hardware and software and yet
remains simple and intuitive in use, with a minimal learning curve.

In conclusion, this chapter has taken a brief look at some of the systems-
related issues and tried to place them within an overall program context.
Naturally, there are a host of other related issues, especially around mar-
keting and user training, which will have an impact on the overall success
of the project. Designing, building and implementing a significant bio-
metric system may be compared with building a ship. You know roughly
what a ship looks like and what it is supposed to do (float on water), but this
is not enough. You also need to know the environment in which it will be
used, the purpose for which it will be used, how many passengers it will
carry and of what type, who the crew are and what their capabilities need to
be, what the performance requirements are, and a host of other parameters.
You will also need a specification for engine type, fixtures and fittings, con-
struction methodology and so forth. You would probably not start building
the ship without a detailed blueprint, and you should not start on your bio-
metric project without a blueprint either. In this respect, clearly under-
standing and documenting the requirements, defining and documenting
the operational processes, defining and documenting functional elements
of the system, describing the existing architecture, designing the required
infrastructure, specifying the required components and defining the soft-
ware requirements are all part of the biometric program blueprint. This all
needs to be undertaken in a structured and coherent manner and docu-
mented in such a way that any project team could pick up the documenta-
tion, understand the requirements and build the system, just as any
shipyard could pick up the blueprint and build the ship.
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11Biometrics and the US
Constitution

Kenneth P. Nuger and James L. Wayman

11.1 Introduction

11.1.1 Privacy Versus Security; Mankind Versus Machine

Is biometric identification a practical aid to ensuring individual and collective
safety in an increasingly crowded and complicated world, or an Orwellian
vision with the potential to strip us of our right to be let alone? In these early
years of the 21st century, the sciences and technologies of surveillance and
monitoring have advanced to the point where we now, collectively, have the
capability to threaten the most basic democratic notions of individual
autonomy and privacy. Yet at the same time, autonomous acts by unmonitored
individuals and groups have cost the lives of thousands and have threatened
our fundamental right to feel, and indeed be, safe and secure. This inherent
conflict between collective safety and individual privacy rights needs to be
addressed carefully by those who create and implement these technologies.

Biometric identification technology in particular has raised concern
among some civil libertarian groups for its potential to allow for govern-
ment, and commercial, monitoring of activities of named individuals. We
now have the technological means not just to monitor statistically the
behavior of groups (which is the historic core of all social sciences), but to
directly associate specific behavior with identified individuals. Although
this capability, through fingerprinting, dates at least to the 19th century [1],
it is the automatic association of actions to individuals through the use of
measurement and computational machinery that some find so unsettling,
particularly if such capability lies in the hands of government. Yet we fully
expect our government to develop and utilize technologies to protect us
from the actions of individuals with violent or otherwise criminal intent.
What are the reasonable governmental uses of biometric identification
technology under the limitations imposed by the US Constitution?

In a democratic society which values government accountability and
individual privacy, it is the rule of law which shapes the manner by which
the government may interact fairly with its citizenry [2]. One of the basic
principles shaping the rule of law in the USA is the right of individuals not
to be treated unfairly by government. This broad notion manifests itself in
two legal principles in particular: due process and individual privacy. The
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concept of due process requires the government to acknowledge the possi-
bility of errors, allowing means for their mitigation. The concept of privacy
goes beyond simply acknowledging the possibility of errors to set limits on
the power of government to meddle in the lives of individuals. These court-
protected guarantees require the government to respect the rights of indi-
viduals by limiting intrusions to those which directly further recognizable
and legitimate societal interests. This historical balance between indi-
vidual rights and societal interests is at the heart of all democracies, and is
placed under a new strain by the advent of biometric technologies. The
purpose of this chapter is to explore ways in which this balance might be
maintained, reconciling government use of biometric technologies with
the US Constitutional requirements of due process and privacy protection.

11.1.2 The Growth of Both Anonymous Public Transactions and the
Complexity of Identification

Human identification using automatic (computer-aided) means dates back
only somewhat over 40 years [3], but the public identification of individ-
uals has a much older history. In 1850, the population density of the USA
was about 8 persons per square mile. In 1990, it was over 70 [4]. In 1850, only
one US city, New York, had a population of over 170,000 people. Today, well
over 100 cities do. In earlier, less urbanized, times it was the rule, not the
exception, that parties in a civil transaction were previously acquainted.
Identity verification was done humanly as a matter of course, and was for-
mally required in many public proceedings. The role of the required wit-
nesses to civil proceedings, such as marriage ceremonies and deed
transactions, is to verify the identities of the participating parties as well as
to attest that the transaction did, indeed, take place.

In many US states, election laws require voters to declare at the polling
place, in an “audible tone”, both their name and their address [5]. These
laws are precisely for the purpose of allowing the public verification of a
claimed identity, thus ensuring the sanctity of the “one person, one vote”
concept of our democracy. Although we do have a tradition of anonymity
with regard to public political activities [6], the idea that more general
public transactions can be accomplished anonymously is a very new one to
society. The idea of accomplishing financial transactions based on credit
with no previous relationship between the creditor and debtor dates only to
the growth of the credit card industry over the last 30 years.

It might be that our desire for anonymity has grown because of the pres-
sures of living in an increasingly crowded society. The process of identifi-
cation, whether by human or machine methods, has certainly become
increasingly difficult with increasing population size. Identification
requires the recollection of personal characteristics previously associated
with an identity and the recognition that these characteristics do not more
closely match those of any other individual. The identification of a number,
say N, of individuals requires the comparison of each of the presented char-
acteristics to N previously learned patterns, so the process grows in com-
plexity as N2, whether done by man or machine.
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Additionally, if these personal biometric characteristics are represented in a
machine as points in a high-dimensional space (as most biometric measures
are), the space becomes increasingly crowded as the number of points
increases. This increases the possibility that a sample biometric will be incor-
rectly matched to one stored in the same area of the space. To minimize this
“false match” problem, comparison thresholds for matching samples to stored
points must be tightened as N increases. Tighter thresholds, of course, increase
the probability that a sample will incorrectly not match a stored vector from
the correct individual, the “false non-match” problem. So not only does the
complexity of the identification problem increase with increasing N, both false
positive and false negative recognition errors increase as well.

So given the increasing demands for impersonal transactions, the
increasing difficulty of identifying individuals in a crowded society, and
the recent availability of automatic means for such identification, it seems
inevitable that society would turn to biometric identification as a tool. It is
our belief that the fundamental question is not the appropriateness of a
general requirement for public identification, but the risks added when
that identification becomes handled by automatic means, most particu-
larly in the hands of the government.

The use by government of biometric technologies has increased rapidly in
the past decade. Biometrics is currently used on the state level as a condition
of qualification for some government programs, such as social service bene-
fits and driver’s licenses. This use of biometrics is aimed at preventing
people from enrolling under multiple identities in violation of the system
policy. It is increasingly common for state and local governments to require
welfare applicants to have fingerprint images scanned into a database as a
condition for receiving welfare. When this unique personal identifier
becomes part of the database, an individual engaging in a fraudulent attempt
to enroll twice in the same welfare program will be matched and appre-
hended when submitting to another fingerprint scan. When a qualified
recipient later presents her- or himself to collect benefits, the fingerprint
image may again be scanned to verify the presenting individual’s identity.
Similarly, many states’ driver’s licensing agencies, like California’s Depart-
ment of Motor Vehicles, require applicants to provide a fingerprint as a con-
dition for obtaining a driver’s license. As with welfare agencies, motor
vehicle agencies wish to prevent individuals from fraudulently obtaining a
driver’s license in another name when a previous license has been revoked.

Government use of biometric technology as a tool of public policy, in a
society where personal identification has become increasingly difficult,
must recognize the balance between personal rights and societal interests.
In the USA, this balance is protected by the Constitution, as interpreted by
the courts, both state and federal.

11.1.3 Constitutional Concerns

In the USA, the rights of privacy, due process and security from unreason-
able search and seizure are grounded in the Fourth, Fifth and Fourteenth
US Constitutional Amendments:
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Fourth Amendment
The right of the people to be secure in their persons, houses, papers, and
effects, against unreasonable searches and seizures, shall not be violated; and
no warrants shall issue, but upon probable cause, supported by oath or affir-
mation, and particularly describing the place to be searched and the persons
or things to be seized

Fifth Amendment
Any person shall be held to answer for a capital, or otherwise infamous, crime,
unless on a presentment or indictment of a grand jury, except in cases arising
in the land or naval forces, or in the militia, when in actual service, in time of
war, or public danger; nor shall any person be subject, for the same offense to
be twice put in jeopardy of life or limb; nor shall any person be compelled, in
any criminal case, to be a witness against himself, nor be deprived of life, lib-
erty or property, without due process of law; nor shall private property be
taken for public use, without just compensation

Fourteenth Amendment
Section 1. All persons born or naturalized in the United States, and subject to
the jurisdiction thereof, are citizens of the United States and of the State
wherein they reside. No State shall make or enforce any law which shall
abridge the privileges or immunities of citizens of the United States; nor shall
any State deprive any person of life, liberty, or property, without due process
of law, nor deny any person within its jurisdiction the equal protection of the
laws.

It has been the role of the courts, both state and federal, to provide a con-
textual interpretation to the adjectives “unreasonable” and “due” in these
three amendments when assessing the appropriateness of government
behavior toward its citizens. It is most instructive, therefore, to study both
the philosophical history and recent court rulings in these areas as they
might apply to biometric technologies. In the next section, we will survey
“due process”. Privacy, including “self-incrimination” and “search and sei-
zure” issues, will be addressed in Section 11.3.

11.2 Due Process

11.2.1 Entitlements and Rights

The logic of due process is rooted in the notion that personal freedom in a
constitutional democracy can only be preserved when there is some con-
sistent way to check arbitrary and capricious actions by government [7].
Simply stated, the Fifth and Fourteenth Amendment concepts of due pro-
cess require both federal and state governments to carry out their obliga-
tions fairly. With regard to biometric technology, our primary due process
concern is with the denial of service by a government agency on the basis of
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a biometric measure. In such a case, distinction is made under the law
between the denial of an entitlement or privilege and the denial of a right.

If a government agency denies an individual what is normally consid-
ered an entitlement, due process requires the agency to demonstrate the
reasonableness of its action in light of the hardship placed on the indi-
vidual. In this case, the government must establish a rational basis for the
denial. If the denial is of what is normally considered a right, the govern-
ment must demonstrate, to the satisfaction of the court, a compelling gov-
ernment interest. The compelling government interest must be shown to
be preferred over the denied human freedom. In other words, if the denial
is of an entitlement, the test is “reasonableness” or “rational basis”; if a
right, the test is “compelling government interest” or “preferred
freedom”. These two, the rational basis and preferred freedoms tests, com-
prise the primary analytical methodologies the courts utilize when
judging the constitutionality of government decisions that affect individ-
uals’ rights.

11.2.2 Instrumental and Intrinsic Approaches

Philosophically, two rationales have been used to justify the importance of
due process in a democratic society [8]: the intrinsic and the instrumental
approaches. The intrinsic approach suggests that society gains an impor-
tant moral benefit by allowing individuals to participate in the govern-
mental processes affecting them. To be a “person”, rather than a “thing”,
implies the right to be consulted about what is done with you [9]. As Justice
Frankfurter opined in Marshall v. Jerrico:

no better instrument has been devised for arriving at truth than to give a
person in jeopardy of serious loss notice of the case against him and opportu-
nity to meet it. Nor has a better way been found for generating the feeling, so
important to a popular government, that justice has been done. [10]

The second approach to due process, the instrumental, focuses less on
the right of people to be part of a decision-making process affecting them
and more on the need to ensure that rules for distributing government ser-
vices are accurately and consistently followed. The instrumental approach
creates due process requirements to minimize substantially unfair or mis-
taken decisions that lead to deprivations of entitlements conferred to
people by law. Under the instrumental approach, the purpose of due pro-
cess is not primarily to ensure participation by affected parties, but rather
to ensure that government makes an accurate decision [9].

In both intrinsic and instrumental approaches, due process protections
increase as the individual identities of the affected parties becomes clearer
[11], and as the effect of the government decision becomes increasingly
under the control of an identifiable decision-maker. Therefore, under both
approaches an individual has a right to greater due process of law in chal-
lenging an adverse government decision than would a group [12]. Similarly,
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an individual has a right to greater due process of law as the severity and
harm of the adverse decision increases [13].

Regardless of the philosophical approach taken, the specific form of due
process is not fixed in constitutional law. Some elements of procedural due
process appear to be based on notions of natural law [14], and others on
notions of basic fairness [15]. The government has the duty to give the
affected party: (1) notice [16]; and (2) an opportunity to be heard in an
open hearing [17], before a neutral and detached magistrate [18], with no
direct, personal, substantial pecuniary interest in reaching a conclusion
against him in his case [19].

While both have influenced due process, the instrumental approach has
emerged over the last 25 years as the primary engine guiding due process
protections, while the intrinsic approach has fallen into disfavor. Under the
intrinsic approach, where citizen participation is valued, judges are inevi-
tably required to make judgments about the degree of harm done to an
individual by an adverse government decision, whether involving an enti-
tlement or a right. While perhaps compassionate toward the human condi-
tion, this “political” power given to the courts under the intrinsic approach
is often criticized as unduly subjective and distorting of the concept of a
politically neutral judiciary. Under the instrumental approach to due pro-
cess, the political nature of the judiciary is de-emphasized because the
focus is less on the moral right of individual participation and more on
ascertaining whether government administrators followed proper proce-
dures. Therefore, under the instrumental approach, the judge is spared
from the subjective dilemma of determining how a government decision
will adversely affect an individual and, instead, will focus on the more
objective task of assessing whether government administrators followed
the statutory procedures.

The now-popular instrumental approach guides courts to be less con-
cerned with the effect of the government decision on the individual and
more with whether the government decision was made consistent with stat-
utory public policy. Therefore, obtaining due process before the depriva-
tion is less important than obtaining due process at some point in the
policy process. This is bad news for anyone receiving a government denial
based on a biometric (or other) measure because it allows the deprivation
hearing to come after (post-deprivation), rather than before (pre-depriva-
tion), the imposition of the adverse decision.

The intrinsic approach, with its emphasis on individual participation,
gives denied citizens a more intimate ability to challenge the fairness of
government action in a timely manner. By minimizing the requirement
for individual participation, the trend away from the intrinsic and toward
the instrumental approach might make society more skeptical of bio-
metric technology as a tool of public policy. If government utilizes bio-
metric technologies to deny individuals what are commonly considered
constitutionally protected rights, with the justification that all statutory
procedures were properly followed, both the legitimacy of government
and the usefulness of biometric technology as a public policy tool could
be undermined.
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11.2.3 Constitutional Development: From the Intrinsic to the
Instrumental Approach of Procedural Due Process

In 1970, with the decision of Goldberg v. Kelly [20], the Supreme Court
began a procedural due process revolution. The main focus of procedural
due process is on whether, and to what degree, individuals can participate
in a government decision adversely affecting them and whether this partic-
ipation may be exercised before the adverse decision takes affect. Gener-
ally, if the adverse government decision jeopardizes a fundamental right, as
opposed to an entitlement, the government must meet the preferred free-
doms test, demonstrating a compelling justification. When rights are in
jeopardy, government agencies can more effectively assuage judicial con-
cerns over due process by allowing individuals the ability to plead their
case to the agency in a pre-deprivation hearing. If however, entitlements
are in jeopardy, an agency may be able to satisfy the judiciary’s concerns by
merely providing a post-deprivation appeal.

In Goldberg, the State of New York terminated welfare benefits without
first allowing the individual an evidentiary hearing. The Supreme Court
ruled against New York, arguing that because both the federal Aid to Fami-
lies With Dependent Children and New York’s Home Relief programs were
statutorily created entitlement programs, these forms of assistance should
be considered more a form of property than a gratuity. Since the Court
viewed welfare as an entitled property right created by statute, and because
welfare benefits give a recipient the means to survive, the Court ruled that
benefit denial without a pre-deprivation evidentiary hearing would violate
due process. The Court reasoned that the nature of the entitlement was so
fundamentally linked to the basic survival of the individual, that termina-
tion without a prior hearing would gravely impair a basic right to life and
liberty [21].

During the early 1970s, the Court expanded the concept of a pre-termina-
tion hearing in several areas: revocation of parole [22], probation [23],
early release for of imates for good behavior [24], suspension of a driver’s
license [25], high school suspension [26], public posting of people unfit to
consume alcohol [27], housing evictions from public projects [28], repos-
session of property [29], garnishment of wages [30] and denial to students
of state residency eligibility while attending college [31]. Cumulatively,
these decisions constituted a mini due process rights revolution. The
Supreme Court, utilizing the intrinsic approach, appeared to emphasize,
as an indispensable component to due process, the pre-deprivation
participation by those adversely effected.

If left unabated, this use of the intrinsic approach would have strength-
ened the ability of individuals to challenge adverse decisions contemplated
by government, including those based on a biometric identifier. The costs
of this approach on government, in terms of financial burdens, time delays,
and jeopardized policy implementation, could have become staggering.
The Supreme Court had previously appeared much less inclined to force
government to provide pre-deprivation hearings. For example, the Court
had held earlier in the 20th century that government could, without a pre-
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deprivation hearing, seize mislabeled vitamins [32] and spoiled food
inventory [33], impose rent controls [34], disqualify a contractor from
doing business with the federal government [35] and deny to an individual
employment as a cook for a concession in a defense contractor’s plant [36].
In these various settings, government was able to successfully demonstrate
that the action taken comported with due process because of the obvious
and immediate threat to the public safety.

However, in 1976, when the Court decided Mathews v. Eldridge [37], it
shifted its procedural due process focus away from the intrinsic approach
and toward the instrumental. Although biometric identification was rela-
tively unknown in the 1970s, this decision would ultimately have a tremen-
dous impact on the ability of government to incorporate biometric
technologies into public policy areas some twenty years later. In the
Mathews case, the issue was whether the Social Security Administration
could terminate disability payments without first holding a hearing. In
ruling for the Social Security Administration, the Court developed a three-
part balancing test to assess the necessity of a pre-deprivation hearing.
This test applies, of course, to deprivations based on biometric measures as
well.

The first part of the Mathews test requires the Court to assess the nature
of the private interest at stake. In Mathews, the private interest at stake was
the property interest Mr Eldridge had in continuing to receive his disability
payments. Here, the Court distinguished disability payments from the wel-
fare payments at issue in Goldberg. To receive welfare payments, an indi-
vidual had to demonstrate poverty, a condition with grave consequences.
However, in Mathews, the Court ruled that the criterion for disability pay-
ments was merely the demonstration of the inability to work, which does
not necessarily imply poverty. While some might find the distinction
somewhat shrill, the Court reasoned that Mr Eldridge would not neces-
sarily suffer gravely adverse affects from termination of his disability pay-
ments, as he may have had other means of support.

The second part of the balancing test requires the Court to assess the
chance that government administrators had made an erroneous decision.
In Mathews, the Court reasoned that the probability of the Social Security
Administration being in error was very slim as its decision was based on a
battery of medical examinations showing that Eldridge was no longer dis-
abled. This second part of the balancing test gives the courts wide latitude
in evaluating the error rates compatible with due process, and supports the
use by government of scientifically based data to demonstrate the accuracy
and, therefore, reasonableness of technologically based service delivery
systems, including biometrics.

The third part of the balancing test requires a court to balance the first
two parts, the nature of the affected private interest and the error proba-
bility, against other government interests that might be adversely affected
by a pre-deprivation hearing. These factors include administrative effi-
ciency, fiscal responsibility, and the potential impact of the pre-depriva-
tion hearing on the government decision. In Mathews, the Court ruled that
disability payments were not fundamental to the liberty of Eldridge, that
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there was little risk of agency error, and that the government had a substan-
tial interest in preserving both its administrative and fiscal efficiency.
Therefore, all the process due Mr Eldridge was a post-termination hearing,
ruled the Court.

The Goldberg and Mathews rulings form the basis for procedural due pro-
cess requirements in the use of fingerprint imaging in current social service
programs. With these cases serving as a guide, agencies can be instructed on
the proper treatment of a welfare applicant whose fingerprint image appears
to match another already in the database. From Goldberg, agencies recognize
that courts will logically treat welfare as a statutorily created entitlement,
thereby conferring a property right on those who qualify. Further, its denial
would cause grave hardship. Thus the first part of the Mathews balance test
sides clearly with the denied recipient.

The second and third parts of the Mathews test, however, can be
employed by social service agencies using fingerprinting to strengthen
their legal position. The current generation of two-print [38] fingerprint
systems is extremely accurate with regard to false matches. This accuracy
[39], coupled with the usual protocol of human visual comparison of com-
puter-matched images when fraud is suspected, decreases the chance,
under the second part of the Mathews test, that the agency decision was
based on error. Under the third part of the Mathews test, the fingerprint
imaging requirement serves the important, even compelling, purpose of
reducing welfare fraud. Thus, it is justifiable on the grounds of both admin-
istrative and fiscal efficiency. Finally, to ensure the integrity of the decision
and the dignity of the recipient, the agency should provide a timely process
to denied parties to allow challenge of the decision.

An example of the reconciliation of constitutional due process and bio-
metric measurement to satisfy both individual and government interests is
demonstrated by New York’s enactment of fingerprint imaging as part of its
state social service program. In 1992, New York amended section 139-a of
the New York State Social Services Law to require fingerprint imaging as a
condition for obtaining welfare in both Rockland and Onondaga counties.
Since initial assessments of this experimental program were favorable [40],
New York expanded the fingerprint imaging requirement to several other
counties in an attempt to reduce both intra- and inter-county welfare fraud.
However, if the agency believes, as a result of a matched fingerprint, that an
applicant is guilty of fraud, section 139-a provides that benefits will not
automatically be denied. Before the denial of benefits, the individual must
be given notification and then may request a hearing to be conducted
within 45 days [41].

At the hearing, the individual may present evidence contesting the accu-
racy of the biometric comparison and will have the opportunity to examine
the state’s evidence. This hearing preserves both the intrinsic nature of due
process, by granting the individual the right to participate in the decision-
making process, and the instrumental nature of due process, by allowing
the careful assessment of the accuracy of the finding.

While engineering and algorithmic advances may be making biometric
devices extraordinarily accurate in benchmark tests, numerous conditions
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exist in practice that increase the false match rate. Therefore, as govern-
ment agencies begin using biometric data to deny recognized rights,
whether welfare checks to an indigent, or a driver’s license to a commercial
driver, courts will be forced to consider two distinct problems. Firstly, they
will have to determine whether the device’s accuracy in the considered
application is sufficient to meet the rigors of due process. Secondly, they
will have to determine whether agencies have appropriate and timely reme-
dies for aggrieved individuals challenging an adverse decision. If these two
conditions are met, the chance that reviewing courts will find due process
violations against agencies that use biometric technologies will be greatly
reduced.

11.2.4 The Enigma of Substantive Due Process

Even if a government agency acts under color of statute and its decision-
making processes are accurate, its policies may be challenged as being arbi-
trary, capricious and wholly unrelated to legitimate government interests,
and thus lacking “substantive” due process. As discussed earlier, if the
policy adversely affects a fundamental right, government must demon-
strate that it has a compelling interest in implementing the policy. If the
policy adversely affects an entitlement or a privilege, the individual must
demonstrate that there is no rational relationship between the policy and a
legitimate government interest. In either case, aggrieved parties can chal-
lenge government policy as arbitrary or capricious, lacking substantive
due process. Courts, then, are required to determine the nexus between the
policy and legitimate government interest, as well as to assess whether the
benefit denied is a right or a privilege, with greater protection afforded to a
finding of right [42].

The California case of Christopher Ann Perkey v. Department of Motor
Vehicles [43] applies directly to biometric technology and serves as an
excellent example to illustrate the problem of substantive due process [44].
California instituted a requirement that each applicant for a driver’s license
submit a fingerprint to the Department of Motor Vehicles [45]. Ms Perkey
refused to be fingerprinted and was denied a license solely on the basis of
this refusal. She took legal action, claiming that the fingerprint require-
ment violated substantive due process because there was no relationship
linking it with the state’s stated interest in promoting highway safety. In
other words, she claimed the fingerprint requirement to be arbitrary and
capricious, unrelated to any legitimate government interest.

In response to her challenge, the California Supreme Court first deter-
mined the right to drive as not fundamental and not protected by the Consti-
tution. Therefore, the appropriate level of analysis was determined to be the
rational basis test. This rendered the state fingerprinting requirement con-
stitutional as long as it remains procedurally fair and reasonably related to a
proper legislative goal [46]. To substantiate the state’s fingerprint policy, the
Department of Motor Vehicles offered the following argument. The state has
an obligation to ensure that individuals who are issued a driver’s license
meet the qualification for safe driving. These qualifications are, at least, a
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demonstrated knowledge of California’s vehicle laws and a demonstrated
competence in observing these laws while driving. When an individual fails
to demonstrate competence in either of these areas, California can deny or
revoke the driver’s license. Studies in California during the 1980s showed
that the incidence of driver’s license fraud was increasing [47], leading to the
suspicion that people whose licenses had been revoked or suspended for
reckless or impaired driving were illegally applying for new licenses under
assumed names. Therefore, the Department of Motor Vehicles contended
that the interception of applications from those who pose a serious danger to
public safety constituted a proper legislative objective. The remaining ques-
tion, then, was whether the fingerprint requirement was reasonably related
to that objective.

In Perkey, the Department of Motor Vehicles asserted that fingerprint
technology was the only reliable way to ensure the integrity of its driver’s
licensing records. Handwriting samples are too variable, and photographs,
or more precisely, one’s appearance, can too easily be changed. Therefore,
the Department of Motor Vehicles argued, and the California Supreme
Court agreed, that the fingerprint requirement bore a rational relationship
to the legitimate goal of furthering highway safety by giving the state a reli-
able method of checking the identity of driver’s license applicants.

This example demonstrates the basic requirements of substantive due
process. If an individual challenges the use of a biometric identifier in this
way, the reviewing court must assess no fewer than three different ques-
tions. First, is the interest furthered by the government a valid exercise of
governmental power? Both the federal government and the states have
broad police powers to further the health and safety of individuals within
their respective jurisdictions. Therefore, this first question requires the
court to determine whether the policy is consistent with governmental
police powers. The second question requires the reviewing court to assess
whether the challenged policy is arbitrary or capricious. In so doing, the
court must determine the potential for error in the challenged program. In
the case of biometric technologies, courts will have to determine whether
the methods are reliable enough to ensure the absence of a matching error.
The third question is whether there is a clear connection between the chal-
lenged government program and a legitimate government interest. If the
denial is of a fundamental right, the reviewing court must be convinced
that there is a compelling interest in doing so. If, however, as was the case in
Perkey, the right denied is deemed non-fundamental, or a privilege, the
reviewing court need only assess whether the challenged government pro-
gram is rationally related to a legitimate government interest.

The difference between a compelling interest and a legitimate govern-
ment interest is subjective. Under the preferred freedoms test, denial of a
fundamental right must be done only in the pursuit of a particularly impor-
tant governmental responsibility, and then, only in the most narrowly pre-
scribed way . However, under the rational basis test, the one used in Perkey
based on the finding that a driver’s license is not a fundamental right, the
government need only demonstrate that its goals are beneficial. In these
instances, the challenged program needs only the smallest relationship to
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the legitimate government interest asserted to not contravene the
standards of substantive due process.

11.3 Individual Privacy

11.3.1 The Basis of an Inferred Right to Privacy

The primary problem in discussing privacy is that the US Constitution con-
tains no specific guarantee to privacy [48] and only some state constitu-
tions afford citizens a guarantee to privacy against state and local
government activities. Still, the right to privacy does have a recognizable
heritage. In 1890, Samuel Warren and Louis Brandeis, in their seminal law
review article [49], argued that even without a specific guarantee, the US
Constitution gives people “the right to be let alone”. Since that time, the
legal understanding of the basis for privacy protection has increased dra-
matically [50]. Professor William Prosser, in his seminal article on privacy,
notes that individuals have no less than four areas in which they can expect
privacy protection [51], from disturbance of one’s seclusion, solitude and
private affairs; from embarrassing public disclosures about private facts;
from publicity that places one in a false light; and from appropriation of
one’s name or likeness for someone else’s gain.

Perhaps privacy’s best definition remains as given by Warren and
Brandeis over a century ago: “the right to be let alone”. It is the fear of many
that the use of biometric technology by government will erode this funda-
mental human right. These fears are aptly summarized by Justice Douglas
in Osborn v. United States [52] in the warning of an

alarming trend whereby the privacy and dignity of our citizens are being
whittled away by sometimes imperceptible steps. Taken individually, each
step may be of little consequence. But when viewed as a whole, there begins to
emerge a society quite unlike any we have seen–a society in which govern-
ment may intrude into the secret regions of man’s life at will.

A few examples serve well to underscore Justice Douglas’ concerns. Like a
Social Security Number, a biometric identifier can serve as a “key” to sensi-
tive and potentially damaging information about a person. When an indi-
vidual provides, for example, a fingerprint for use in a legitimate
identification system, a degree of individual autonomy is potentially ceded.
Without strong protections, government personnel who lift a fingerprint
from the scene of a political meeting could feed this data into a computer
and match the fingerprint with a name, thereby revealing a personal
identity [53].

Not only does a biometric identifier create a key that can aid in surveil-
lance, it also creates a means, via “data mining”, for linking an individual
identified by the biometric measure to information stored in both private
and governmental data banks. As the interchange of information grows,
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relating data becomes strikingly simple, allowing the creation of “cradle to
grave” profiles of individuals. Even more disconcertingly, the strands of
one’s life can be tied together without one’s knowledge or consent, by indi-
viduals who have never personally collected any of the information in
question. Individuals, and ultimately society, might accept biometric tech-
nology if the limits of the use of collected information can be ascertained in
advance. Certainly, the indiscriminate dissemination of biometric
information will be broadly opposed.

Anonymity is recognized as important in the exercise of some other con-
stitutional rights [54]. For example, the United States Supreme Court, in
Talley v. California [55], ruled that ordinances that prohibit public distri-
bution of leaflets not identifying the name of the author violated the first
amendment. If, by matching a latent fingerprint to one in a database, a gov-
ernment agency could attach a name to an anonymous leaflet, a chilling
effect could be had on the right to free expression, especially if the anony-
mous speech is critical of government policy.

If individuals can claim a constitutional right to personal anonymity in
different contexts, the collection and dissemination of biometric identi-
fiers could prove to be a vexing problem. Unlike names, addresses, phone
numbers and even physical appearances, which can change or be altered
over time, some biometric identifiers, such as iris patterns or finger ridges,
are relatively stable. Once a biometric identifier and a person are linked
together in a database, that person forever sacrifices a degree of personal
anonymity [56]. To the degree that the information is accessible by more
people, basic privacy rights are eroded.

Therefore, the most serious privacy dilemma confronting biometric
technology is not one of physical intrusiveness, or the kind of probing typi-
cally related to search and seizure, but rather one of personal autonomy.
Today’s social realities lend support for the collection of personal and sen-
sitive information, by both the government and the private sector, for a
variety of reasonable purposes. Usually in the case of the public sector a
clear case can be made that this information is needed to provide public
services efficiently. The impact on personal privacy can only be limited if
the collection, storage and use of these information fragments are narrowly
specified.

11.3.2 Privacy and the Fourth Amendment

The use of biometric technologies in government applications must be sen-
sitive to an individual’s reasonable expectation of privacy under the Fourth
Amendment guarantee of the right to be “secure in their persons, houses,
papers, and effects, against unreasonable searches and seizures”. [57] In
Katz v. United States [58], decided in 1967, the Supreme Court clarified the
meaning of the Fourth Amendment by opining that it protects people, not
places, and wherever a person has a reasonable expectation of privacy, he is
entitled to be free from unreasonable government intrusion. However, a
person’s Fourth Amendment expectation of privacy can be offset if the gov-
ernment can demonstrate that doing so advances a legitimate government
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interest [59]. This particularly applies to administrative, non-criminal
searches where courts generally give a broader interpretation to the word
“reasonable”.

There are two important questions to be addressed. First, if a government
agency collects biometric data, especially in non-criminal applications,
does that act constitute a search for purposes of Fourth Amendment anal-
ysis? Second, if collecting biometric data is considered a search, is the
search reasonable?

There is little doubt that courts will quickly answer the first issue in the
affirmative; that biometric data collection by government agencies consti-
tutes a search in both administrative and criminal settings, thereby
acknowledging a privacy right under the Fourth Amendment. It is well
established, from fingerprinting [60] to drug testing [61], that the gath-
ering of physiological information by a government agency is considered a
search under the Fourth Amendment.

With regard to the “reasonableness” of a biometric search, we turn again
to the California case of Perkey v. Department of Motor Vehicles [43]. Here,
Ms Perkey contended that the mandatory fingerprint requirement violated
her Fourth Amendment guarantee against unreasonable search and sei-
zure. In disposing of this argument, the California Supreme Court exam-
ined the existing case law and concluded the fingerprint requirement did
not exceed Fourth Amendment thresholds for obtrusiveness. Its inquiry
first examined whether fingerprinting involved the type of intrusive inva-
sion of bodily integrity that has, in the past, been found to violate either the
due process clauses of the Fifth and Fourteenth amendments or the implicit
privacy guarantees of the Fourth Amendment. The court concluded that
fingerprinting alone does not infringe upon an individual’s right to pri-
vacy, holding that fingerprinting involves none of the probing into an indi-
vidual’s private life and thoughts that marks an interrogation or search.
Unlike forcible stomach pumping [62] or the forced taking of a semen
sample [63], both previously disallowed by the courts as unreasonable, the
physical process of taking a fingerprint does not require penetration
beyond the body’s surface [64]. Therefore, fingerprinting does not readily
offend the principles of reasonableness under the Fourth Amendment.
Indeed, because fingerprinting is so inherently unobtrusive, courts have
routinely permitted it in many non-criminal contexts including, for
example, as a requirement for employment.

While it is possible for non-penetrative searches to still offend individual
notions of privacy, this particular objection is not likely to prevail against
fingerprint scanning technology. Fingerprint scanning does not cause any
discomfort, penetrate one’s body, or leave any residual traces on the indi-
vidual. Its similarity to rolled ink fingerprinting also gives it a sense of
social familiarity [65, 66]. Therefore, it is not likely that reviewing courts
will rule that fingerprint scanning technologies are unreasonably
physically intrusive.

Still left unresolved, however, is whether other forms of biometric tech-
nologies will be deemed unreasonably intrusive. Technologies like signa-
ture and speaker recognition systems, hand and finger geometry devices,
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infrared face and vein recognition systems, body odor detectors, and ret-
inal [67] and iris scanners, may slowly meet with general social acceptance,
as neither unusual behavior nor penetration of the body is required. Courts
have held, as in National Treasury Employees Union v. Von Raab [61], that
urinalysis, used for drug screening as a condition of employment even in
the absence of suspicion, is not so intrusive as to constitute an unreason-
able search. It is therefore highly unlikely that the less intrusive and humili-
ating forms of biometric technology will be found unreasonable in court
challenges.

In the wake of catastrophes like “9/11" and the Oklahoma City bombing
of a federal building, might our society acquiesce to biometric identifica-
tion as a condition of entry into airports and other public buildings? In
light of a perceived decrease in public safety, society may develop the view
that there is a decreased expectation of privacy under the Fourth
Amendment for people in certain public settings. Much like random drug
testing is becoming accepted as reasonable in advancing specific public
interests, might not large-scale biometric identification become accepted
as an aid to public safety? Certainly, as witnessed by the increasing use of
security systems at airports and other public places, our society is reevalu-
ating privacy claims of the individual in favor of more public security. As
long as biometric devices are used as an administrative tool to further
legitimate, recognizable public interests, courts will likely follow precedent
and rule that such use does not constitute unreasonable search and seizure
under the Fourth Amendment.

11.3.3 Privacy and the Fifth Amendment

The Fifth Amendment insulates an individual from being compelled to tes-
tify against him- or herself in a criminal proceeding. Therefore, from wel-
fare eligibility to driver’s license renewals, any use of biometrics that
furthers governmental administrative purposes would not generally sup-
port a Fifth Amendment self-incrimination objection. The Supreme Court
has, however, extended the right against self-incrimination to non-crim-
inal procedures that may lead to criminal prosecution [68].

The use of biometrics in direct relationship to criminal investigations,
however, does allow for Fifth Amendment challenges. Courts have consis-
tently taken the position that forced extraction of physical evidence, espe-
cially after some suspicion of criminal activity, does not automatically
amount to forced self-incrimination, as long as the methods are relatively
non-intrusive, do not affront society’s sensibilities, and do not provide the
state with evidence of a testimonial [69] or communicative nature [70].
However, the Supreme Court drew the line in 1952 in Rochin v. California
[62], invalidating evidence of drug use obtained from a forced stomach
pumping, because such government behavior shocked the conscience of a
civilized society.

If Rochin begs the question as to what forms of forced extraction do not
shock the conscience, the case, Breithraupt v. Abram [71], decided in 1957,
provides a valuable clue. In Breithraupt, police took a small blood sample
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from an unconscious person involved in a fatal car accident. The Supreme
Court ruled this extraction was constitutionally permissible, stressing that
clinical blood extraction was not significantly intrusive and had become
both commonplace and accepted by society. Nine years later, the Court reit-
erated this point in Schmerber v. California [72], by recognizing that both
federal and state courts have held that the right against forced self-incrimi-
nation does not extend to forced subjection to fingerprinting [73], photo-
graphing, or physical measurements, nor to forced writing [74], speaking,
standing, walking or gesturing for identification purposes [75, 76].

The courts’ positions on Fifth Amendment issues have generally fol-
lowed the path of Breithraupt [71] and Schmerber [72] in allowing non-
intrusive, non-verbal data collection in criminal settings. It is therefore
likely that courts will rule that biometric data taken in a criminal context,
or in a non-criminal context where the data may later be used in a criminal
proceeding, is not so obtrusive that it violates elements of privacy inferred
within the Fifth Amendment’s self incrimination clause. Obviously, this
conjecture is based on the premise that biometric applications remain rela-
tively unobtrusive and involve no physical penetration.

The key may be well summed up in a passage from Miranda v. Arizona
[77], where the Court offered insight on the concept of forced self incrimi-
nation when it said:

to maintain a fair State-individual balance... to require the government to
respect the inviolability of the human personality, our accusatory system of
criminal justice demands that the government... produce evidence against
him by its own independent labors, rather than by the cruel, simple expedient
of compelling it.... Compelled submission fails to respect the inviolability of
the human personality.

11.3.4 Privacy of Personal Information

Much more troublesome than the privacy issues posed by biometrics in the
Fourth and Fifth Amendment context is the threat to the more general pri-
vacy right to control the use of one’s own personal information in varying
contexts. In many ways, this right is similar to the notion of inviolability of
the human personality expressed above in Miranda. It is equally well estab-
lished that both national and State governments have broad powers to reg-
ulate privacy rights to further broad public interests. These concepts are
rooted in Article 1, Section 8 of the United States Constitution, granting
Congress an array of explicit powers, and the tenth amendment in the Bill
of Rights, granting to states broad police powers to further the health,
safety and morality of people within its jurisdiction. Together, these provi-
sions provide a basis upon which government may pass legislation care-
fully defining when individual privacy rights must be protected and when
other public interests or competing private rights may prevail.

Especially as administrative government has taken root in the 20th cen-
tury, it is a common and accepted practice for government to collect, keep
and use information about individuals to further legitimate government
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interests. However, a problem arises when biometric data, collected for
authorized purposes, is transferred to other government or non-govern-
ment agencies for purposes not originally intended.

In Perkey, a privacy objection was raised over how the fingerprint infor-
mation was used. Although the Department of Motor Vehicles initially col-
lected fingerprints to develop a driver database with the goal of reducing
driver’s license fraud and increasing highway safety, it routinely provided
or sold information in the database to third parties for non-safety related
purposes. Because California’s state constitution acknowledged a right to
personal privacy and state statute recognized the privacy of one’s personal
information, the California Supreme Court ruled the Department of Motor
Vehicles was prohibited from disseminating the fingerprint data to unau-
thorized third parties [78]. It is significant to note, however, that individ-
uals in states with specific state privacy protections, like California, will
likely be afforded a greater degree of privacy than individuals in states
without.

The challenge for society is to create policies ensuring that biometric
identification data is used for disclosed, accepted and legitimate purposes,
and is not made available for purposes for which the data was not originally
intended. Perhaps the most effective manner to accomplish this is through
legislation. For example, when New York amended section 139-a of its
Social Services Law to allow finger imaging as a qualification for obtaining
welfare in selected counties, the law stipulated that the fingerprint data
could not be used for any other purpose than the prevention of multiple
enrollments for home relief [79]. Therefore, this statute allows fingerprint
imaging for the purpose of disbursing welfare, but may not be used to iden-
tify the individual for any other purpose. Provisions like this may go far in
developing social acceptance for the use of biometrics as well as protecting
government due process requirements and individual privacy rights.

Certainly, provisions like those imposed in New York will prove fruitful
in permitting the widespread use of biometrics in both the public and pri-
vate sectors. In an era of increased state autonomy and less national over-
sight, states may well be saddled with the responsibility of working with
each other to coordinate effective privacy provisions that make biometrics
a socially acceptable form of data collection. Historically, however, the
American experience fully demonstrates that state regulation of nation-
wide programs is uneven at best and devastating to the national public
interest at worst. Last century, during the last heyday of states’ rights, prob-
lems like child labor, unscrupulous business production methods, environ-
mental degradation, employee and product safety, sanitation, and many
other socially important issues, were routinely ignored in favor of free
market forces. Given the nation’s failed attempt at state controlled regula-
tion a century ago, and the recent re-emphasis on “states’ rights”, broad
social acceptance of biometrics may be stalled if a patchwork of privacy
regulations fail to uniformly secure the reasonable privacy expectations of
people throughout the nation

Perhaps the most realistic long-term, legitimate and thoughtful balance
between individual control of private information and the public and
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private sectors’ need to access that information lies in national legislation,
where standards for authorized and unauthorized biometric data collec-
tion and transfer can be applied uniformly. In the short term, federal legis-
lative efforts to comprehensively define the acceptable use of biometrics in
both the public and private sector appear unlikely. In the wake of devolu-
tion of federal authority and evolution of state authority, an uneven patch-
work of varying privacy protections of biometric data may emerge,
inevitably raising difficult issues in the courts.

In a limited way, the Privacy Act of 1974 [80] may serve as a useful model
of existing national legislation to balance the need for biometrics with
individual privacy. This act established a framework of rights and remedies
for the subjects of records maintained by federal agencies. The law’s many
provisions generally require federal agencies to keep records with due
regard for the privacy interests of the people who are the subjects of those
records and gives these people some control over the collection, mainte-
nance, use and dissemination of information about them [81]. If state and
local jurisdictions, in collecting biometric data, fail to consider adequately
the privacy interests of individuals, Congress could attempt to apply many
of the principles inherent in the Privacy Act to state and local agencies.
While any such attempt may elicit cries of federal invasion into states’
rights, these may fall on deaf ears in the courts if egregious privacy inva-
sions result due to uncoordinated efforts by the states to protect
individuals.

11.4 Conclusions

There is little doubt that, in the coming years, more government agencies
will begin using biometric technology to increase the perception of secu-
rity and to assist their service delivery systems. It is also true that our soci-
ety’s technological genius has advanced computer and biometric
technology such that it is becoming easier each day to link the identity of an
individual to a life history of personal information. With this fascinating
but troubling reality must come responsible and thoughtful decision-
making. In a democracy, power ultimately rests with the people, and if the
people ultimately feel threatened by biometric technologies, they certainly
have the collective power to carefully modify, or even stop, its use in even
reasonable situations.

Ultimately, before biometric technologies can become successfully inte-
grated in public sector settings, several challenges must be met. First, gov-
ernment agencies must provide timely and substantive procedures for
individuals wishing to challenge adverse decisions based on biometric mea-
sures. This acknowledges that comparisons based on biometric measures
can be in error. Second, government agencies should not use biometrics to
gather information about people covertly. For example, prior to required fin-
gerprinting, the California Department of Motor Vehicles would routinely
lift latent fingerprints from a driver’s license application if the applicant

328 Biometric Systems



refused to volunteer them during the application process [82]. The use of
biometrics by government agencies in public settings should be fully dis-
closed [83]. Third, government should not collect unnecessary personal
information about individuals. Government must not serve as a warehouse
of personal information on citizens, especially if the information is unre-
lated to the implementation of specific public policies. An overzealous data
collection strategy will lead to public distrust in government policy-making
and the potential for abuse through “data mining”. Fourth, government
should not improperly use information obtained for a proper purpose nor
disclose the information for unauthorized use. An agency, legally required to
accommodate particular privacy rights, in giving private information to
other government jurisdictions for other, even reasonable, purposes, will
find itself facing legitimate privacy challenges. An interesting dilemma,
however, is posed by the possibility of a government agency, unrestrained by
privacy provisions, giving biometric information to another agency simi-
larly unshackled. The complexity of our federal relationship in the USA, and
the uneven patchwork of privacy rights from state to state could pose serious
obstacles for the widespread use of biometric technologies and vexing chal-
lenges for the courts. Finally, government should be vigilant in ensuring the
accuracy of the information collected.

The importance of these precautions cannot be overstated. Each of these
can become a significant measure in determining whether government is
behaving fairly and within the perimeters of due process of law and privacy
protection. Additionally, from a non-constitutional perspective, each of
these precautions, if heeded, should significantly assuage societal fears
about infusing biometric technology into daily life. The higher the social
trust in government, which is currently at record low levels, the greater will
be the chance of both the public and legal acceptance of this emerging
technology into our society.
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12Privacy Issues in the
Application of Biometrics: a

European Perspective
Marek Rejman-Greene

12.1 Introduction

Biometric methods of authentication offer a more secure link between a
specific individual and a non-human entity. Numerous trials and deploy-
ments demonstrate the wide range of possible application: restriction of
access to physical spaces and electronic resources to those individuals who
have been previously cleared; denying the opportunity for potential
fraudsters to assume multiple identities; enforcing accountability for indi-
viduals undertaking electronic transactions; and matching facial images
from CCTV cameras to databases of criminals. It is not surprising that such
breadth of application has prompted concern. In the main, concerns appear
to centre on threats to the end user’s privacy, but we believe that the issues
are more complex and that a clearer appreciation of end user perceptions
would enable system integrators, designers and the customer to respond in
a more appropriate manner. Should the issues be primarily those of pri-
vacy1, there is a Europe-wide legal framework against which all future
deployments should be assessed. As this framework is often inaccessible to
those unfamiliar with new political and legal developments in Europe, we
introduce it in the context of the historical development of the individual’s
rights to privacy.

For many Europeans, the widespread use of biometric technologies in
films and the perception of these techniques as “perfect” have reawakened
the fears of an all-knowing computer system able to track every citizen and
consumer from the cradle to the grave. The somewhat more informed citi-
zens express a worry about the security of such a biometric-based identi-
fier and the consequences of reuse of templates in other ways, perhaps
placing the reputation of the individual at risk. And beyond these concerns
are the future possibilities of the use of DNA data in tracking people, and in
the linking of biometrics with parallel developments in other surveillance
technologies.
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European sensitivities towards privacy issues have developed against
fears of a growing power imbalance between government and citizen, and
between corporation and consumer with innovations in data mining and
data matching techniques contributing to the imbalance. The development
of philosophical notions of inalienable rights of the individual was heavily
influenced by the experience of many countries both during the Second
World War, and under post-war Central and Eastern European govern-
ments where (generally) manually operated filing systems tracked dissi-
dent citizens and members of minorities. Such notions were first codified
in the 1950 European Convention on Human Rights (ECHR) [1]. Two
decades later, with the commercialisation of large mainframe computers,
the first laws to protect “personal data” about individuals were drafted,
based upon an internationally agreed framework but with a local
interpretation.

As personal information began to be used in services offered by multina-
tional organizations, and with the expansion of the European Union, the
need for harmonisation of these laws required a Europe-wide legal con-
sensus. The 1995 Personal Data Directive [2], and its transposition into
national laws, offers the legislative underpinning to any discussion about
the use of biometrics in modern systems in Europe. However, there have
been many criticisms of its approach. Its approach predated the age of the
Internet, and its complexity rendered it opaque to the average person. More
specifically it has been criticized for difficulty in application to new tech-
nologies, even though it was designed to be a framework directive, allowing
more specific legislation to be framed based upon its guiding principles
[3]. Discussions are beginning on changes to this underlying framework.
However, in this chapter we examine how the application of biometrics
could be influenced by the current legislative position, and suggest pos-
sible changes in the future. We note that the scarcity of case law on data pro-
tection (especially as it might apply to biometric methods) makes it
difficult to move significantly beyond a restatement of statutory provisions
viewed through the lens of comments from a few noted legal observers.
Note also, that in addition to these Europe-wide data protection and pri-
vacy laws, specific national laws may restrict the use of certain biometric
methods that are considered to be particularly sensitive, such as those
applied to fingerprint records or databases of facial images.

Many deployments of biometric-enabled systems will not just take
account of what appears to be legally possible. A well-designed system
(making use of ‘socio-technical’ design principles) will also be sensitive to
the perceptions and concerns of end users and their social groups. Bio-
metric technologies are almost unique as a security mechanism in the need
for cooperation by the end user to ensure their correct operation2. To
ensure their success, early deployments should be grounded on research
into user perceptions, ascertaining their underlying concerns through
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more advanced techniques than simple questionnaires. Based upon the
results of these studies, the agency can launch an educational program to
reassure future end users. Such research and the output of Privacy Impact
Assessments might also mandate the implementation of additional secu-
rity procedures and more advanced technical solutions. Early sight of these
requirements during the initial stages of the system design cycle will
simplify their secure integration.

Some of the user concerns can be addressed directly, for example by
impartial studies into any health and safety issues, although it is clear that
attitudes may take time to change. Those concerns that are less clearly
articulated will require more extended studies. We shall refer to the results
of preliminary work in European organizations that indicate a possible
route forward.

12.2 Privacy – from Philosophical Concept to a
Human Right

The notion of individual privacy appears to be a modern phenomenon – at
least for the majority of the population in a society. In less mobile societies
with poor roads, few people would venture outside their immediate neigh-
borhood and the arrival of fairs or itinerant travelers was subject to closely
circumscribed laws [4]. Fears of the spread of disease, the supply of poor
quality goods and the possibility of having to care for any ill or unemployed
newcomers, constrained the influx of immigrants. In these societies, the
daily lives of the ordinary people were led without much privacy. Indeed,
the strong Puritan tradition in 17th century England and the American col-
onies seemed to encourage a panoptic3 surveillance by one’s neighbors.

Shapiro regards the partitioning of rooms in a household as the first step
to a culture of privacy and individuality [5]. The impact of this architec-
tural development was minor compared with the expansion in transport
infrastructures in the 18th and 19th centuries, such as improvements in
road quality and the creation of a canal and railway network (the latter
going in hand with the first electronic communications – the telegraph).
The rapid urbanization of much of Western Europe and parts of the USA
completed the options for many citizens to move outside of their place of
birth and schooling, and to assert an individuality apart from their kinship
groups. The accompanying increase in crime rates required a curbing of
the anonymity that life in a city could offer. Hence the second half of the
19th century saw the introduction of the census and codification of laws on
recording births, marriages and deaths. This was also the time of first use of
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biometric identities for tracking and recording criminals, albeit not auto-
matically identifying individuals in the way we understand biometrics
today. Initially this aimed to collect as much information about externally
visible features and easily measurable dimensions, Bertillon’s anthro-
pometry [6] being the most celebrated scheme. This short-lived approach
was superseded a few years later by the discovery of the remarkable indi-
viduality of fingerprints. By the turn of the 20th century, Scotland Yard had
embarked on the use of the hugely successful Galton–Henry classification
system and the fingerprint as a key forensic tool had arrived.

Public authorities could be overzealous in their tracking of criminals;
and the middle classes, growing rapidly in influence and numbers as the
complex economy demanded more in the service sector and more services
from government, articulated a need to limit their powers. In much of
Europe, the tradition of the Roman Empire and its successor, the Church of
Rome, had already determined a right for state, economic and religious
institutions to maintain close surveillance on its peoples. Westin com-
ments that this contrasted with English common law traditions and the
Protestant emphasis on individual rights [4]. Although the legal systems
based upon these two traditions had still to be reconciled in the long debate
on a Europe-wide personal data framework, by the beginning of the 20th
century, the plea for a ‘right to be left alone’ from the civil authorities was
already being articulated4. With the questioning of the power of a state to
affect all facets of the life of the citizen, one part of the personal privacy
debate had started. The other aspect, that of giving individuals a right over
the way that information about them is collected and used, was to remain
less pressing for another half century. Manual records on populations of
millions were always going to be inefficient in impacting the lives of
individual citizens.

The Second World War demonstrated how the accumulation of personal
data in the hands of unscrupulous authorities could be abused. Some coun-
tries already had well-established manual systems with lists of people of
Jewish origin, while in others no such data had ever been gathered. The dif-
ference between these two approaches to the collection of personal records
was tragically confirmed once these countries were invaded. The use of
mechanical sorting equipment, which was already being imported, could
have greatly simplified the organization of information about the citizens
of occupied Europe. It is not surprising that the publication of Orwell’s
1984 in early post War Europe should have struck such a chord. In 1950, the
participating states to the Council of Europe articulated a response in
Article 8 [7] of the ECHR guaranteeing a right of privacy: “Everyone has
the right to respect for his private and family life, his home and his corre-
spondence”. This was linked to freedom from interference by public
authority in the exercise of this right except in closely defined circum-
stances. The Convention offered individual redress against governments
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abusing their authority by an ultimate personal appeal to the European
Court of Human Rights in Strasbourg.

The increasing prosperity of the 1950s and early 1960s was accompanied
by a belief in the benefits of technological progress and organizational effi-
ciency. In particular, governments in Europe were attracted to the potential
of computerization of records, firstly, of the census, and then of other ser-
vices such as social welfare payments. Just as the first wave of such pro-
posals were about to be implemented, the climate of thought amongst
Europeans changed. Although the events of 1968 have been characterized
as a rebellion by the youth of Europe, other currents of opinion were ques-
tioning the wisdom of concentrating power, and the information on which
power is built, without countervailing checks and balances. In Germany,
the notion of “informational self-determination” seemed to capture the
essence of the second meaning of privacy protection.

The world’s first data protection act, passed in the German state of
Hessen in 1970, was directed at offering this check on the operations of a
regional government, but as more countries recognized the need for such
legislation, the scope widened to take in commercial use of personal data as
well. Increasingly, the limitations of national laws in a rapidly globalizing
world led to calls for an international system for data protection, to protect
against states with no laws or inadequate laws from becoming “data
havens” with no controls on the processing of data. For example, shortly
after Sweden passed a data protection act in 1973, export licenses to the UK
were not given in two instances on the basis of a lack of a corresponding act
in the UK at that time. In 1980, the Organisation for Economic Cooperation
and Development (OECD) adopted guidelines on cross-border data flows
[8], while a year later, the Council of Europe Convention [9] set common
standards for legislation based upon a human rights approach, aiming to
harmonize the differing laws in continental countries.

Although these agreements were influential in determining the course of
subsequent laws – such as the first UK Data Protection Act in 1984 – by 1990
it was clear to the European Commission that the lack of a common frame-
work, under which personal information could be gathered, processed,
stored, transmitted and disposed of securely, was likely to impede the com-
mercial development of both existing and novel services. In its introduc-
tion to the rationale for the harmonization of data privacy laws, the
Commission states [10]:

Developments of a frontier free Internal Market and of the so called “infor-
mation society” increase the cross-frontier flows of personal data between
Member States of the EU. In order to remove potential obstacles to such flows
and to ensure a high level of protection within the EU, data protection legisla-
tion has been harmonised. The Commission also engages in dialogues with
non-EU countries in order to insure a high level of protection when exporting
personal data to those countries.

Over the course of the following five years, the Commission (together with
its two counterparts in the European law-making process, the European
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Parliament and the Council of Ministers from the then 15 member states)
agreed the principles for an EU-wide directive of 1995 [11]. This required
governments in each of the countries to transpose the directive into national
law by 1998. (The current status of this implementation can be checked on
the Internet [12].) The Personal Data Directive was designed to be a frame-
work for other, more specific, directives and laws that would apply the prin-
ciples to specific circumstances. The first additional directive applied to the
telecommunications sector, a directive that has recently been updated and is
required to be implemented in the national laws of member states by 31
October 2003. In spite of its recent agreement, there have already been calls
to make changes in the light of experience in applying the framework direc-
tive, 95/46/EC; see, for example, [14]. As such changes are unlikely to impact
on the application of biometrics for a number of years, this article will con-
fine its remit to the current directive, and wherever appropriate, to the imple-
mentation of the directive in the UK as the Data Protection Act 1998 [15].

A number of practical interpretations of the directive and the national
laws have been prepared. Some are available publicly, while others are
offered as part of a consultancy package. For example, the European Com-
mission GUIDES project has produced a set of guidelines for those active in
the e-Business sector [16]. Another useful resource is the Privacy Audit
Framework for compliance with the Dutch Data Protection Act, and for
which an English translation is available [17]. This framework enables an
external auditor to check that an organization’s services operate correctly
under this Members State’s law, and to issue a certificate against the
successful completion of the audit.

12.3 The European Personal Data Directive

In overview, this directive establishes Eight Principles5 of personal data
protection which determine the legality of the processing of such data. Per-
sonal data must be:

1. Processed fairly and lawfully.
2. Collected for specified and lawful purposes and not processed further in

ways that are incompatible with these (the “finality” principle).
3. Adequate, relevant and not excessive in relation to the purposes for

which they are collected or processed.
4. Accurate (and where necessary kept up to date).
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5. Not kept for longer than is necessary for the stated purposes (that is in a
form that permits identification of the data subjects6).

6. Processed in accordance with the data subject’s rights (which are
explained in further detail).

7. Secure (against accidental or unlawful destruction, accidental loss,
alteration, unauthorized disclosure or access, using measures that have
regard to the state of the art and costs of implementation, and ensuring
that a level of security is maintained that is appropriate to the risks rep-
resented by the processing and the nature of the personal data to be
protected).

8. May only be transferred to those countries that ensure an adequate level
of protection for the personal data.

There are several additional provisions of note, before we examine the
application of this law to biometric-enabled systems:

� Processing of data extends over the whole life cycle of data, and covers
(or will cover after a transitional period) data held in paper records as
well. (Article 2b of the Directive).

� Each country must provide for a supervisory authority (in general a Data
Protection Commissioner’s Office, although in the UK this is fulfilled
through the office of the Information Commissioner, with additional
responsibilities for Freedom of Information) to whom controllers of data
processing operations must, in general, notify their intentions7 (Articles
28, 18–21).

� Coordination of the activities of the Commissioners is undertaken by an
Article 29 Data Protection Working Party, which publishes regular state-
ments on issues common to all member states [18].

� Certain categories of data are deemed to be specially sensitive and pro-
cessing of this type of information is allowed only under specific condi-
tions (Article 8).

� Article 15 grants a right to individuals not to be subject to a decision that
produces legal effects or significantly affects them, is based solely on
automated processing of data intended to evaluate certain personal
aspects relating to them, e.g. performance at work, creditworthiness,
reliability and conduct.

� The Sixth Principle offers specific rights for data subjects to obtain
copies of certain data about themselves, to request corrections, etc. (Arti-
cles 10–12, 14).

� There are exemptions for many of the Principles, but, overall, the Direc-
tive does not apply to three categories of activities: firstly, people who
undertake processing of data for purely personal or household reasons
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are exempt; secondly, certain activities of governments or their agencies
are exempted, including those relating to public security, defense, state
security and the activities of the state in areas of criminal law; and
thirdly, exemptions for certain journalistic and literary activities are
listed (Articles 3, 13).

� In a few instances, national laws can be framed selecting one of a number
of optional clauses. Note, in particular, that individual member states
can extend protection to individuals beyond those mandated in the
directive (Article 4).

12.4 Applying the Directive and National Laws to
Biometric Systems

Although Data Protection Commissioners recognize that biometrics offers
a challenge to the legal framework on personal data and privacy, to date
only three have explicitly considered the ground rules for operation of bio-
metric-enabled systems. The Dutch Commissioner’s office overviewed bio-
metric methods in 1999 and assessed the application of the European
Privacy Directive to them. A report was published and is available on the
web in English [19].

More recently, CNIL, the French data protection commission, has under-
taken a major study into the privacy implications of biometrics. It found
that there was a lack of reliable information about how biometric-enabled
systems operate in practice and confirmed that, in general, technologists
and data controllers were not aware of the rights of end users. In view of the
potential harm that could result to end users from systems not designed in
accordance with data protection principles, CNIL has proposed a number
of measures. In its 2001 annual report [20], CNIL categorized applications
using biometrics into two broad groups. It maintained that there was no
problem with systems where the template storage is under the end user’s
control, e.g. stored on a card, a PC or a cellphone in the possession of the
user. The second class, where the template is stored in a centralized data-
base, is more complex. Where the biometric record is of a type that leaves
no trace or is not easily captured without the cooperation of the end user
(such as eye-based systems or those applying hand geometry devices), inte-
grators can use these methods, provided that the usual data protection
principles such as finality and proportionality are observed. In contrast,
centralized template storage using biometrics that leave a trace or can be
easily obtained (such as systems with face, fingerprint or DNA recognition)
should only be applied in high security systems. Furthermore, CNIL pro-
posed that, in the near future, systems using biometrics should be specifi-
cally authorized, and (in the absence of any independent assessment
process) a labeling scheme for IT products (including biometrics) that
conform to the data protection principles should be instituted.

In response to the world-wide reaction against recent acts of terrorism,
the Article 29 Working Party emphasized the exceptions already offered
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under both the Framework Directive and the then Telecommunications
Directive, warning against “the proliferation of the use of means of identi-
fying, and more generally, gathering of data relating to individuals through
the use, for instance, of biometrics” [21]. The German data protection
authority has also recently published a more detailed analysis of the role of
biometrics in this context.

As we shall see later, the transposition of the Personal Data Directive into
national laws, and the probable way in which the application of these laws
to biometric systems will be interpreted, differs across the 25 nations of the
European Union. As relatively few systems have been implemented in Euro-
pean countries, and fewer still are deployed to the public at large, there has
not been an opportunity to test their status. The observations in this paper
aim to summarize some of the aspects that have been discussed in the legal
community. As usual, advice on deployment of systems in a specific
country should be sought from legal counsel in those member states. Their
advice should cover individual national laws on the use of specific
biometrics such as fingerprints, as these may add further restrictions on
the application of these technologies.

The European Commission funded BIOVISION roadmap project [22]
has reviewed the biometric context of the directive and national laws, and
provide initial materials towards the definition of a code of conduct for
applications making use of a biometric in a privacy-compliant manner. A
parallel activity is being undertaken by the UK government managed Bio-
metric Working Group [23].

12.4.1 Biometric Data as “Personal Data”

Perhaps the aspect of personal data protection law that has been debated
most extensively is the question of application of the law to biometrics. To
what extent is biometric data, “personal data” within the meaning of the
directive and the national laws?

The directive defines personal data to be “any information relating to an
identified or identifiable natural person”, making the distinction with legal
entities such as companies. Furthermore, it amplifies the definition by
stating that an identifiable person is one who can be identified directly or
indirectly, in particular by reference to

� an identification number; or
� to one or more factors specific to his physical, physiological, mental, eco-

nomic, cultural or social identity.

Recital 26 of the directive states that “account should be taken of all the
means likely reasonably to be used either by the controller or by any other
person to identify the said person” and that the principles should not apply
once the data is rendered anonymous in such a way that the data subject is
no longer identifiable. The UK implementation of the directive limits the
application to living persons (the directive itself is silent on this aspect)
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and takes a different approach towards defining personal data as that
which can identify an individual:

� from that data; or
� from that data and other information which is in the possession of, or is

likely to come into the possession of, the data controller... Section 1(1).

Possible personal data that relate to the implementation of a biometric
can include:

1. The image or record captured from the sensor at the initial enrollment.
2. Any transmitted form of the image or record between sensor and pro-

cessing systems.
3. The processed data, whether completely transformed to a template or

only partially processed by an algorithm.
4. The stored image or record or template.
5. Any accompanying data collected at the time of enrollment.
6. The image or record captured from the sensor during normal opera-

tion of the biometric (verification of identity or identification).
7. Any transmitted form of the image or record at verification or

identification.
8. The template obtained from the storage device.
9. Any accompanying data obtained at the time of verification or

identification.
10. The result of the matching process.
11. Any updating of the template in response to the identification or

verification.

Situations where biometric data is not treatable as personal data are
likely to be relatively rare. Indeed, the Dutch Data Protection Authority
says that “(biometric) data involved will remain personal data in most, if
not all stages of their processing”8. One case where the data is unlikely to
fall within this definition is for a biometric application where all of the fol-
lowing conditions are met:

� The identity of a previously enrolled individual is only represented by a
“one way” template with no possibility of reconstruction of the original
record.

� The template could also be generated by a sufficient number of other
subjects in the population.

� The template is stored on a card (or token) held by the end user.
� The comparison, at verification, of the output of the sensor with the tem-

plate, is made on the card (or token) itself.
� All images and records relating to the enrollment are securely disposed

of at the time of enrollment.
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� No other data is available that, combined with the biometric data, could
link the user uniquely to a template.

� The backup alternative, in case of failure of the biometric, does not
expose the biometric to a process whereby a subsequent verification
could reveal the person’s identity.

Any divergence from this protocol would need to be examined in the light
of the definitions of personal data. Of course, bringing the sensor onto the
portable storage medium itself (e.g. a smart card), storing all data on the
card and making the comparison on the card, and then transmitting the
result of the comparison in a secure way off the card would move consider-
ably towards the required level of non-identifiability. (Such a solution has
been developed under the European Commission-funded Finger_card pro-
ject [24]).

However, applications making use of the two modes of Identification and
Exclusion of Already Identified Persons are likely to fall within the defini-
tion of personal data, and therefore within the remit of the Directive, unless
one of the many exemptions offered in the Directive are invoked.

12.4.2 Biometrics and Sensitive Data

Article 8 of the personal data directive lists the following special categories
of data that demand specific additional attention:

� Racial or ethnic origin
� Political opinions
� Religious or philosophical beliefs
� Trade union membership
� Processing of data concerning health or sex life

In general, the subject should have given explicit consent to the pro-
cessing of such data9, although there are a number of exemptions from this
requirement. Note that data relating to offences, criminal convictions or
security measures may only be carried out under the control of an official
authority.

Those aspects that might impact on the operation of biometric methods
are racial or ethnic origin and data relating to health. It is inevitable that the
initial photographic image captured by the camera in a face recognition
system will have some indication of race. However, it seems excessive
to label it as sensitive data at this early stage of processing (as the Dutch
Data Protection Commissioner believes10) with all of the attendant
requirements for consent, if it is to be discarded following processing into a
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template. Indeed, this very aspect is addressed in a current proposal for
minor revisions to the Directive, jointly tabled by a number of European
countries. The proposed amendment aims to make it clear that these
“essentially incidental revelations... do not amount to sensitive data for the
purposes of the Article 8.1” [25].

Most biometric systems have been developed, validated and tested by
organizations in the USA and Europe. It not inconceivable that the algo-
rithms that are used operate preferentially for ethnic groups that are highly
represented in those geographical areas; and that, for example, directed
searches for templates of facial images relating to non-Caucasians could be
successfully initiated – albeit with results outputted on a probabilistic
basis. Another example is the fear that images of eye features could indicate
a tendency towards certain illnesses. There is little evidence for such
claims, but there is little research so far to prove otherwise. It has been sug-
gested that some systems using speaker verification could be tuned for
other functions, such as detection of states of anxiety or even likelihood of
lying. Any such applications could contravene the principles of personal
data protection, specifically the First Principle of fair and lawful pro-
cessing. The implication of the sensitive data principle for people with dis-
abilities who require special forms of biometric, or default to a non-
biometric alternative, may need to be considered.

12.4.3 Proportionality Principle

A fundamental principle in European law is that of proportionality, which
some writers maintain would rule out the use of a biometric method, if the
objective could be achieved in some other, less privacy-threatening way.
Jan Grijpink describes how a hand geometry device is likely to be accept-
able for access to buildings critical for the operation of an organization,
whereas access control by means of a fingerprint biometric to a secondary
school might be more difficult to justify [26]. Furthermore, many privacy
advocates question the need for identification when verification against an
anonymized identity will suffice. Even when a biometric identification is
required – for example to confirm whether a person has already been
enrolled in a given scheme – the link to other data about the individual
(name, etc.) may not be necessary for the application.

12.4.4 First Principle Compliance – Fair and Lawful Processing

Processing of personal data needs to be carried out in a fair and lawful
manner. This includes the act of obtaining the biometric data in the first
place. Covert collection of biometric data is not permitted unless it falls
within one of the defined exemptions. Wherever possible, the subject’s con-
sent should be sought, since that consent removes many of the problems for
an agency deploying a biometric-enabled system. If the system includes
additional software that also uses personal data, perhaps of a different
form, it would seem prudent to explicitly mention the use of the biometric
in the consent statement. A further decision is on whether to adopt an “opt-
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in” or “opt-out” approach, and again, this will depend on the specifics of the
planned deployment.

12.4.5 Fourth Principle Compliance – Accuracy

By their very nature, biometric systems could occasionally return a false
accept, and with it the possibility of an inaccurate record of activity against
another individual. Whether this is considered as a failing in accuracy or in
security (the Seventh Principle), the system designer and implementer
should take appropriate steps to ensure that the personal data of the indi-
vidual whose identity has been assumed is not compromised.

12.4.6 Seventh Principle Compliance – Security

The Seventh Principle (Article 17 of the Directive) requires the controller
(the person or agency that determines the purposes and means of pro-
cessing of the personal data) to implement appropriate technical and orga-
nizational measures to protect the personal data. It requires the controller
to offer a measure of protection against

� unlawful destruction or accidental loss;
� alteration;
� unauthorised disclosure or access; and
� all other unlawful forms of processing;

in particular where the transmission involves the transmission of data
over a network. If controllers do not carry out the processing themselves,
then the processors actually undertaking the work must provide guaran-
tees that the specified security measures are carried out. In addition, a legal
contract must be in place between the controller and the processor, and the
controller must ensure compliance with these measures. The measures
should take account of the state of the art and assess the costs and risks
involved.

It is clear that the framers of the directive understood the impact of inad-
equate security on the integrity and confidentiality of personal data. With
biometric-enabled applications, this may be an important consideration,
and maintaining the security of biometric data is particularly critical in
reassuring end users that their identities will not be stolen in this way. It
will also hinder the “function creep” that could extend the range of uses
beyond those for which the original system design was intended.

Biometric methods themselves may well be required in order to provide
the requisite levels of security for other IT systems processing personal
data. In such applications, use of traditional user authentication methods
based on “what you know” and “what you have” may not be sufficient, and
the risk–benefit analysis based on the state of the art will require the use of
a stronger authentication. This biometric itself has to be secure and
securely integrated for the Seventh Principle to be met.
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The UK Data Protection Act reminds controllers of the need to ensure the
reliability of employees who have access to personal data and the accompa-
nying detailed advice from the Information Commissioner makes refer-
ence to ISO standard 17799 [27] on information security.

12.4.7 Eighth Principle Compliance – Transfer to Third Countries

Transfer of data outside of those countries that have an adequate level of
protection is not allowed except under specific conditions (Article 25 of the
Directive). The adequacy of the protection is judged against a number of
criteria:

� Nature of the data
� Purpose and duration of the processing operation(s)
� Countries of origin and final destination
� Rules of law, both general and sectoral, in force in the third country
� The security measures that are complied with in that country

A number of derogations from the strict requirements of this principle
are listed in the directive (Article 26). Transfer of personal data to countries
lacking this level of adequacy may take place on a number of grounds.
Among these is the unambiguous consent [28] of the data subject, consent
being defined as “any freely given specific and informed indication of his
wishes... (signifying)... his agreement”. (Note the distinction between this
type of consent and “explicit consent” required in the case of processing of
sensitive data.) Other grounds include necessity for the performance of a
contract or protection of the vital interests of the data subject. It is not sur-
prising that ensuring compliance in all states for services offered by multi-
national companies can result in escalating costs for legal advice.

One approach for organizations is to agree on bilateral transfers of data
using approved contractual commitments in accordance with section
26(4). A better solution is for the laws and practices in that target country to
be declared to provide this degree of adequacy. The European Commission,
after obtaining the best evidence available for the adequacy of the personal
data frameworks within specific countries, has issued a number of deci-
sions in respect of the adequacy of protection in certain states. These deci-
sions are available on the Internet [29].

12.4.8 Automatic Decision-Making

Article 15 could be interpreted as limiting the operation of certain bio-
metric-enabled systems that significantly affected the individual. Since all
biometric systems are based on the probability of a match, it is likely that
there will be many instances of failed authentication. Human intervention
at this point would remove the Article 15 restriction, although there will be
many situations where individuals could be disadvantaged. They could
miss a plane connection while they wait for an immigration officer alerted
by a false reject, or be embarrassed on failing to be authenticated when
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together with friends or business colleagues. This article, originally in the
pre-directive French legislation, requires further clarification by the data
protection authorities in respect of its application to biometrics11.

Testing of all types of devices has demonstrated that some individuals
have difficulty in even enrolling. If biometric-enabled systems become the
norm, will those unable to enrol using a popular from of biometric become
a new underclass [30]?

12.4.9 Exemptions

The directive has many exemptions, primarily for government in national
security, crime and health applications. Exemptions are also allowed for
parties to a contract to agree to waive some of their rights, for the data sub-
ject to consent to exemption or where the interests of the data subject are
paramount. There are additional exemptions for journalists and
researchers. This illustrates one of the main criticisms of the Directive and
the national laws that implement it: its complexity. With differences in
interpretation already impacting on the application of biometrics, system
integrators looking to cross-border deployments may experience a degree
of uncertainty as to the legality of their proposals.

12.5 Article 8 of the European Human Rights
Convention

Article 8 of the European Convention on Human Rights [31] offers a wide-
ranging protection for individual privacy. (The ECHR has formed the basis
for challenging unfair decisions of public authorities since coming into
force in 1953.) This article states:

1. Everyone has the right to respect for his private and family life, his home
and his correspondence.

2. There shall be no interference by a public authority with the exercise of
this right except such as is in accordance with the law and is necessary in a
democratic society in the interests of national security, public safety or the
economic well-being of the country, for the prevention of disorder or
crime, for the protection of health or morals, or for the protection of the
rights and freedoms of others.

Note the two principal tests in the exemption clause: its necessity for demo-
cratic society and any exemption being in accordance with the law. Neces-
sity entails a response to a pressing social need and has to be in proportion
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to the aims of the law. Wadham and Mountfield [32] comment that the
second test of accordance with the law requires:

� The need for a specific legal rule to authorise this interference.
� Adequacy of access to the specific law by an individual.
� The law must be sufficiently precisely formulated to allow the individual

to foresee the circumstances under which the law could be applied.

Challenges to the legality of biometric schemes based upon this right
could arise in government applications, especially where the Personal Data
Directive offers exemptions, e.g. in national identity schemes, for security
systems in critical infrastructures, in the criminal justice system and in the
provision of medical services.

12.6 The Role of Privacy-Enhancing Technologies

Many innovative services will use personal data in order to improve the
customer experience as well as providing valuable feedback to the service
provider. This may allow the provider to improve the service, to market it
more effectively or to sell the data to others who may configure their ser-
vices accordingly. The European Commission recognized the benefits of
such innovation, but was also concerned that consumers and citizens
might not appreciate the significance of agreeing to such reuse of personal
data. As a result, it has promoted Privacy-Enhancing Technologies (PETs
[33]) that would provide a measure of protection. Their studies
distinguished two types of PET:

1. Where the design of a biometric-enabled system has been specifically
tailored to be privacy-respecting using the best available technologies.

2. Where measures are offered to the end users individually to enable them
to protect their privacy.

Simple PETs of the second type, such as P3P, Platform for Privacy Prefer-
ences, allowing Internet users to specify at a high level what information
should be passed back to a web site and with whom it should be shared,
have been criticized for being too simplistic. In any case, the default condi-
tions on purchase or installation of software were unlikely to be changed by
the majority of users.

Biometric devices could be designed in accordance with PET principles,
although only one system has been commercialized so far. For biometric-
enabled systems to be designed for privacy and security, the customer for
the deployment and the customer’s system designers need to consider such
requirements from the inception of a project. One example of a PET-based
system of the first type stores the template only on a card held by the user.

The willingness of end users to make a system work, either on account of
an immediate direct benefit (such as the use of fingerprint verifiers for the
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distribution of South African pensions), or to support the safety and secu-
rity of the community (such as trusted traveler schemes), will only be
gained following an understanding of their fears and concerns. PETs can
offer some reassurance, and accreditation of systems by external entities,
such as the Common Criteria scheme for IT security [34], or conformance
with ISO 17799, may reassure the more technically aware.

There is little appreciation of the role that biometric methods could play
in protecting the privacy of individuals, i.e. in acting as a PET, or a key com-
ponent of a PET. It may be that applications that use biometrics in this
manner are not afforded sufficiently high visibility. For example, in Europe,
awareness of identity theft and the impact of poor authentication practices
appears to be limited, mostly restricted to those who have suffered a loss
and their immediate circle of colleagues and friends. Repeated warnings of
imminent disaster followed by little or no impact on the average citizen
(the “crying wolf ” effect) leads to disbelief and failure to take the most
basic precautions. Marketing the positive value of biometrics in mini-
mizing the opportunities for identity theft will be needed once solutions
become commercially attractive.

12.7 Looking to the Future

When the Personal Data Directive was agreed upon, provision was made
for a review of its implementation together with the preparation of reports
on possible amendments. This review has started and the 2002 conference
[14] is one contribution to the debate. However, it is already clear that coun-
tries in the EU have chosen to transpose the directive in different ways,
thereby adding to the confusion that the harmonization of laws was meant
to address12. Some member states, such as the UK and the Netherlands [35],
have decided, in general, to follow the wording of the directive, applying it
to both the public and private sectors, clearly identifying the exemptions
for government activities in the areas of national security, criminal justice,
health etc. Germany has delineated its national law into two sections that
deal with private and public applications separately [36]. The Irish bill
(still to be passed at the time of writing) amends the pre-existing legisla-
tion on a clause-by-clause basis in order to conform to the 1995 directive
[37]. The detail in the Swedish national law makes explicit the right to
revoke at any time a previously given consent for processing of personal
data if they are of the sensitive class or if they are to be transferred to
certain third countries [38].

With such a complex legal infrastructure, it is no surprise that organiza-
tions processing personal data have raised concerns about the application
of the directive and the national laws that follow from them. For example, in
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the UK, the results of a government consultation exercise are available,
together with a response by the Information Commissioner [39]. However,
recent comments by the European Commissioner appear to rule out any
early radical change to the Directive [40]. In his view, priority should be
given to the uniform and consistent application throughout the member
states. To this end, the Europe-wide CEN/ISSS activity, IPSE (Initiative for
Privacy Standardisation in Europe), launched in 2000, may be one way for-
ward [41]. Its first recommendation is for the collation of Best Practices for
compliance with data protection laws, making it widely available either
freely or on a low-cost basis. We note that there are alternative viewpoints,
including ones that advocate complete abolition of the personal data pro-
tection regime on the grounds that it is fundamentally misconstrued and
works against the interests of both organizations and individuals (see, for
example, [42]).

Compliance with the requirements of a poorly understood data protec-
tion law may not be sufficient. A clearly articulated Code of Practice may be
a more practical answer, helping the end user, the system integrator and the
data protection authority to gain acceptance for their deployment [43]. In
view of the diversity of applications of biometric methods, separate ver-
sions for government applications and commercial deployments may be
required. Clearly a Europe-wide scheme would be preferable, and activities
such as those in the BIOVISION project and proposals from the Biometric
Working Group are directed towards building a consensus as to its form
and content. Among the possibilities that are under consideration are:

� A statement of purpose of the installation, together with a rationale for
use of a biometric over conventional means of authentication.

� Prominent display of the identity of the “controller” of the installation
near each biometric terminal with a physical or web address to contact
him or her (standards will be needed for positioning and size of any such
notice). Electronic systems might be required to provide a link to these
details, next to each instance of the use of a biometric.

� A maximum time-scale within which the controller will respond to any
questions.

� A statement of compliance with the provisions of named local data pro-
tection laws, together with any exemptions or derogations that have been
used.

� A statement in respect of “opt-in” or “opt-out” opportunities for end
users, together with any rights afforded to the end users in respect of all
personal data held on them.

� Stated retention periods for personal data.
� Any accesses permitted for third parties, including those permitted for

lawful authorities.
� Wherever possible, the logic behind decision-making should be made

available.
� Any Privacy Impact Assessment (PIA) that may have been made prior to

deployment (a study that may include analysis of proportionality and
finality, procedures in the event of failure to enrol, false rejection or false
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acceptance etc.), together with any implementation plan based upon the
recommendations of the PIA.

� Summary of the security measures employed to protect personal data
relating to the end users, including details of ISO 17799 accreditation (if
applicable), any external audit, maintenance procedures, etc.

� Specification of procedures to ensure secure disposal of the personal
data in the event of withdrawal of the system.

� Specification of internal monitoring procedures to ensure compliance
with the security policies applicable to the biometric and related
systems.

� Details of the external audit of the system and whether this will be avail-
able to the public or end users.

� Review procedures and dates for re-examination of the operation of the
system.

12.8 Social and Psychological Context of the
Application of Biometric Methods

It is widely acknowledged that many individuals are fearful of the introduc-
tion of biometrics. Questionnaire studies have shown wide differences in the
response to proposals such as the replacement of a PIN with a fingerprint or
the use of an eye identification method for physical access. Often the ques-
tionnaire is produced after minimal user familiarization with a technology.
Perhaps the developers of the questionnaires are unaware of the unspoken
messages conveyed by the order and form of questions [44]. More subtle
approaches will be needed if we are to uncover all of the concerns of poten-
tial end users of these innovative technologies. The shorthand of “concern
with privacy”may hide a large number of other fears and uncertainties, some
of which may be allayed by reassurance, targeted education, and additional
time to familiarize the users with a radically new approach. The use of such
new approaches to ascertain end user perception in the security field, e.g.
semi-structured interviews in a focus group setting, has revealed many
problems with existing authentication methods such as passwords [45]. The
discussions have been analyzed using grounded theory approaches that
search out repeated underlying themes. Proposals to extend this kind of in-
depth analysis to biometric methods are under way.

If privacy concerns are just part of the story, what are the other compo-
nents of the fear of biometrics? In an early paper, Simon Davies listed a
number of concerns that were already being expressed in 1994 [46]. Since
then, many other commentators have added to the list:

� Fear of “function creep” towards systems that will disadvantage the end
user.

� The de-humanization of people by their reduction to bytes on a
computer.
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� The uniqueness promoted by some systems does not allow the represen-
tation of the multiple facets of identity that a person offers towards
friends, family, work colleagues etc.

� The high integrity of identification reverses the “natural” relationship of
government serving citizens and society.

� The symbolic representation of a “perfect” system in authority.
� Fear of society being increasingly driven by a technocracy, rather than a

democratically elected government.
� Driving out criminal activity through the use of biometrics would dis-

place it to more violent or socially disruptive activities.
� Exemptions and exceptions that would be made for the powerful in

society.
� A system that would entrench fraud and criminality through technologi-

cally secure systems.
� The methods are the mechanism foretold in religious prophecies.

The impact of Hollywood’s association of biometric methods with spies,
advanced military hardware and science fiction may have increased these
concerns, portraying these as perfect technologies in the service of pow-
erful organizations.

Of course, these concerns could be viewed as positive features of the bio-
metric approach. For every comment that interviewees make concerning
the possible theft of fingerprints and reuse in an unrelated criminal case,
there is another person who is encouraged by the use of a technology that
has such a long history of integrity in the service of society. Both extremes
make judgements based upon inadequate knowledge and understanding of
technologies and institutions.

The first stage in addressing these concerns is to gather together these
issues from all sections of the target population and to organize them in ways
that allow further investigation. Only once the models for these concerns
have been elucidated can we begin to structure questionnaires that will
reveal the extent of these concerns and the depth or intensity with which they
are held, as an initial step to addressing them in an effective manner.

The privacy component of such issues has been examined already, albeit
in contexts other than biometrics. Studies in the way that end users of mul-
timedia systems react to breaches in privacy offer models that could be
used in the biometrics field, specifically in the application of automatic
face recognition to CCTV systems. Victoria Belotti [47] has developed a
model, based upon the need of users to (1) have feedback on, and (2) then
exert control over, four elements in complex environments:

� Capture of personal information into the system.
� What happens once the information is in the system.
� Who and what processes will make use of the information in the system.
� For what purpose they will use that personal information.

Further research by Anne Adams [48] has centered even more on the end
user’s perspective on the transfer of personal information to organizations.
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Contrast this stance (and that of Belotti) with the legal perspective of the
data protection directives and national laws that emphasize the need for
controls on the organization that collects and processes this information.
Of course, the laws acknowledge rights for the data subject to agree to the
collection and use of the personal data, to check that the data is correct and
up-to-date etc. These laws aim to treat the parties as equals in the exchange
of data for mutual benefit to the data subject and the organization. The situ-
ation for the end user may well be different, with lack of knowledge and
understanding of the longer term consequences of her decisions. Adams
acknowledges that every transaction will be different, the response to a
request for personal data being determined situationally by the data sub-
ject. For each situation, the outcome will be colored not only by the individ-
ual’s perspective, but by the norms and values of her social group. In this
model, based upon the results of empirical research, the end user has three
principal concerns:

� That the trust she places in the receiver of the personal data is not
misplaced.

� That the risk–benefit analysis she makes of the usage to which that data
is put is correctly assessed.

� That her judgement as to the sensitivity of the information is correctly
made.

These concerns will be modified by comments from her peer group; they
will respond to stories in the media and the experience of working in sim-
ilar environments. However, if that experience leads the user to make
unwarranted assumptions with outcomes that are unexpected or embar-
rassing for her, a dangerous overreaction can result. This overreaction and
the sharing of that disappointment can set back the efforts of the propo-
nents of a system, not just for the individual, but also for those in her imme-
diate community.

One approach to ensuring that such issues are considered during the
system design is to carry out a Privacy Impact Assessment (PIA) at an early
stage of the process, preferably at the requirements capture stage. Although
specific concerns will not emerge, the process of examining the system
from the perspective of all the stakeholders should highlight the additional
studies that are necessary and the time-scale over which these should be
completed. Since security and privacy policies and solutions are often
interrelated, an early focus on privacy aspects should ensure a correspond-
ingly early attention to the security dimension of the system design.

Acknowledging the psychological and social contexts of the use of a bio-
metric device may require more than just developing a model of these user
concerns and making the appropriate interventions in standard design
approaches. Complex systems based upon novel technological components
will inevitably pose problems for the customer and end user if their intro-
duction is accompanied by new and unfamiliar processes. Often, newly
introduced systems that run counter to existing processes force end users
into inefficient “workarounds” in an attempt to complete the required tasks
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(see [49], for example).. To avoid these inefficiencies in biometric-enabled
systems, all of the stakeholders – the task, the end user and the customer –
need to be in the forefront of a socio-technical design, from the inception of
the project through to its deployment and operation [50]. All too often,
however, the technology and its demands drive the design and the design
methodology. Innovative trialing of new methodologies, that balance the
technical and the human aspects, has been under way for many years, pre-
dominantly in Scandinavian countries [51]. We believe that future bio-
metric-enabled systems will have a higher likelihood of success if they take
account of such approaches.

12.9 Conclusions

The European perspective on the privacy implications of the application of
biometrics is presented in a historical context. Many decades of debate have
culminated in a framework for the protection of personal data that is both
complex and, in some cases, difficult to apply to new technologies such as
biometrics. Technical and organizational measures to secure the operation
of the biometric-enabled system are a key part of the Eight Principles of
Data Protection, and specific technical measures in the form of Privacy-
Enhancing Biometric Technologies would provide a degree of reassurance
to end users. Further protection of the end user’s rights is offered by Article
8 of the European Convention on Human Rights that guarantees respect by
the state for a citizen’s private and family life, home and correspondence.

However, it is clear that users’ views on the privacy implications of the
application of biometrics may be only a part of a package of concerns.
Situationally determined models of privacy are a first step towards a richer,
more comprehensive model for the response of individuals to the introduc-
tion of biometrics. Such a model will be a valuable input to socio-technical
designs of biometric systems that give equal weight to the social dimension
and to issues of performance, standardization etc.

As biometric methods become more prevalent, we believe that famil-
iarity with their operation should allay some of these fears. In the interim, a
number of measures could help with their acceptance. Codes of Practice
written in simpler terms than those used in the Personal Data Directive
should clarify the rights and obligations of users and system owners. Tar-
geted educational initiatives and installation of devices in high-profile lim-
ited deployments will begin the process of familiarization.
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Figure 8.3 DET plot of primary condition systems in the 2002 evaluation.
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Figure 8.4 One-speaker detection performance as a function of duration for a typical system in
the 2002 evaluation.
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Figure 8.8 Performance as a function of training/test handset. Performance for one system on
different number tests for each combination of training and test handset types. All speakers here
have both a carbon-button and an electret trained model, and all the trials are paired by such
target models. Performance is best when all data is electret.
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Figure 8.11 DET Plots of the best performing extended data systems of three sites in the 2002
evaluation. For contrast, the DET plot of the best performing system of the main evaluation in 2001
(on a completely different data set) is shown.
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Figure 8.12 DET Plots of the multi-modal system of one site in the 2002 evaluation. Separate
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correspond to the three matched type cases, while the thin lines correspond to the six mismatched
cases.
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