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Preface

The use of computers to recognize humans from physical and behavioral
traits dates back to the digital computer evolution of the 1960s. But even
after decades of research and hundreds of major deployments, the field of
biometrics remains fresh and exciting as new technologies are developed
and old technologies are improved and fielded in new applications. World-
wide over the past few years, there has been a marked increase in both gov-
ernment and private sector interest in large-scale biometric deployments
for accelerating human-machine processes, efficiently delivering human
services, fighting identity fraud and even combating terrorism. The pur-
pose of this book is to explore the current state of the art in biometric sys-
tems and it is the system aspect that we have wished to emphasize.

By their nature, biometric technologies sit at the exact boundary of the
human-machine interface. But like all technologies, by themselves they can
provide no value until deployed in a system with support hardware, net-
work connections, computers, policies and procedures, all tuned together
to work with people to improve some real business process within a social
structure.

In this book, we bring together some of the most respected and experi-
enced international researchers and practitioners in the field to look
closely at biometric systems from many disciplinary angles. We focus on
the technologies of fingerprint, iris, face and speaker recognition, how
those technologies have evolved, how they work, and how well they work as
determined in recent test programs. We look at the challenges of designing
and deploying biometrics in people-centered systems, particularly when
those systems become large. We conclude with discussions on the legal and
privacy issues of biometric deployments from both European and US per-
spectives. We hope you find this book valuable in understanding both the
historical accomplishments and remaining challenges in this fascinating
field.

James Wayman
Anil Jain
Davide Maltoni
Dario Maio

31 July 2004
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An Introduction to Biometric
Authentication Systems

James Wayman, Anil Jain, Davide Maltoni and Dario Maio

1.1 Introduction

Immigration cards holding both passport number and measures of the
user’s hand [1]; fingerprints taken as a legal requirement for a driver
license, but not stored anywhere on the license [2]; automatic facial recog-
nition systems searching for known card cheats in a casino [3]; season
tickets to an amusement park linked to the shape of the purchaser’s fingers
[4]; home incarceration programs supervised by automatic voice recogni-
tion systems [5]; and confidential delivery of health care through iris rec-
ognition [6]: these systems seem completely different in terms of purpose,
procedures, and technologies, but each uses “biometric authentication” in
some way. In this book, we will be exploring many of the technologies and
applications that make up the field of “biometric authentication” - what
unites them and what differentiates them from each other. In this chapter,
we want to present a systematic approach to understanding in a unified way
the multitude of technologies and applications of the field.

We start with a narrow definition, designed as much to limit the scope of
our inquiry as to determine it.

“Biometric technologies” are automated methods of verifying or recognizing
the identity of a living person based on a physiological or behavioral charac-
teristic [7, 8].

There are two key words in this definition: “automated” and “person”.
The word “automated” differentiates biometrics from the larger field of
human identification science. Biometric authentication techniques are
done completely by machine, generally (but not always) a digital computer.
Forensic laboratory techniques, such as latent fingerprint, DNA, hair and
fiber analysis, are not considered part of this field. Although automated
identification techniques can be used on animals, fruits and vegetables [9],
manufactured goods and the deceased, the subjects of biometric authenti-
cation are living humans. For this reason, the field should perhaps be more
accurately called “anthropometric authentication”.

The second key word is “person”. Statistical techniques, particularly
using fingerprint patterns, have been used to differentiate or connect
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2 Biometric Systems

groups of people [10, 11] or to probabilistically link persons to groups, but
biometrics is interested only in recognizing people as individuals. All of the
measures used contain both physiological and behavioral components,
both of which can vary widely or be quite similar across a population of
individuals. No technology is purely one or the other, although some mea-
sures seem to be more behaviorally influenced and some more physiologi-
cally influenced. The behavioral component of all biometric measures
introduces a “human factors” or “psychological” aspect to biometric
authentication as well.

In practice, we often abbreviate the term “biometric authentication” as
“biometrics”, although the latter term has been historically used to mean
the branch of biology that deals with its data statistically and by quantita-
tive analysis [12].

So “biometrics”, in this context, is the use of computers to recognize
people, despite all of the across-individual similarities and within-indi-
vidual variations. Determining “true” identity is beyond the scope of any
biometric technology. Rather, biometric technology can only link a person
to a biometric pattern and any identity data (common name) and personal
attributes (age, gender, profession, residence, nationality) presented at the
time of enrollment in the system. Biometric systems inherently require no
identity data, thus allowing anonymous recognition [4].

Ultimately, the performance of a biometric authentication system, and
its suitability for any particular task, will depend upon the interaction of
individuals with the automated mechanism. It is this interaction of tech-
nology with human physiology and psychology that makes “biometrics”
such a fascinating subject.

1.2 A Quick Historical Overview

The scientific literature on quantitative measurement of humans for the pur-
pose of identification dates back to the 1870s and the measurement system of
Alphonse Bertillon [13-17]. Bertillon’s system of body measurements,
including such measures as skull diameter and arm and foot length, was used
in the USA to identify prisoners until the 1920s. Henry Faulds, William
Herschel and Sir Francis Galton proposed quantitative identification through
fingerprint and facial measurements in the 1880s [18-20]. The development of
digital signal processing techniques in the 1960s led immediately to work in
automating human identification. Speaker [21-26] and fingerprint recogni-
tion [27] systems were among the first to be explored. The potential for appli-
cation of this technology to high-security access control, personal locks and
financial transactions was recognized in the early 1960s [28]. The 1970s saw
development and deployment of hand geometry systems [29], the start of
large-scale testing [30] and increasing interest in government use of these
“automated personal identification” technologies [31]. Retinal [32, 33] and
signature verification [34, 35] systems came in the 1980s, followed by face
[36-42] systems. Iris recognition [43,44] systems were developed in the 1990s.
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1.3 The “Best” Biometric Characteristic

Examples of physiological and behavioral characteristics currently used
for automatic identification include fingerprints, voice, iris, retina, hand,
face,handwriting, keystroke, and finger shape. But this is only a partial list
as new measures (such as gait, ear shape, head resonance, optical skin
reflectance and body odor) are being developed all of the time. Because of
the broad range of characteristics used, the imaging requirements for the
technology vary greatly. Systems might measure a single one-dimensional
signal (voice); several simultaneous one-dimensional signals (hand-
writing); a single two-dimensional image (fingerprint); multiple two-
dimensional measures (hand geometry); a time series of two-dimensional
images (face and iris); or a three-dimensional image (some facial recogni-
tion systems).

Which biometric characteristic is best? The ideal biometric character-
istic has five qualities: robustness, distinctiveness, availability, accessi-
bility and acceptability [45, 46]. By “robust”, we mean unchanging on an
individual over time. By “distinctive”, we mean showing great variation
over the population. By “available”, we mean that the entire population
should ideally have this measure in multiples. By “accessible”, we mean
easy to image using electronic sensors. By “acceptable”, we mean that
people do not object to having this measurement taken from them.

Quantitative measures of these five qualities have been developed
[47-50]. Robustness is measured by the “false non-match rate” (also
known as “Type I error”), the probability that a submitted sample will not
match the enrollment image. Distinctiveness is measured by the “false
match rate” (also known as “Type II error”) - the probability that a sub-
mitted sample will match the enrollment image of another user. Avail-
ability is measured by the “failure to enroll” rate, the probability that a
user will not be able to supply a readable measure to the system upon
enrollment. Accessibility can be quantified by the “throughput rate” of
the system, the number of individuals that can be processed in a unit time,
such as a minute or an hour. Acceptability is measured by polling the
device users. The first four qualities are inversely related to their above
measures, a higher “false non-match rate”, for instance,indicating a lower
level of robustness.

Having identified the required qualities and measures for each quality, it
would seem a straightforward problem to simply run some experiments,
determine the measures, and set a weighting value for the importance of
each, thereby determining the “best” biometric characteristic. Unfortu-
nately, for all biometric characteristics, all of the desired qualities have
been found to be highly dependent on the specifics of the application, the
population (both their physiological and psychological states), and the
hardware/software system used [51-54]. We cannot predict performance
metrics for one application from tests on another. Further, the five metrics,
which are correlated in a highly complex way, can be manipulated to some
extent by administration policy.
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System administrators might ultimately be concerned with: (1) the “false
rejection rate”, which is the probability that a true user identity claim will
be falsely rejected, thus causing inconvenience; (2) the “false acceptance
rate”, which is the probability that a false identity claim will be accepted,
thus allowing fraud; (3) the system throughput rate, measuring the number
of users that can be processed in a time period; (4) the user acceptance of
the system, which may be highly dependent upon the way the system is
“packaged” and marketed; and (5) the ultimate total cost savings realized
from implementing the system [55]. These latter, more practical, measures
depend upon the basic system qualities in highly complex and competitive
ways that are not at all well understood, and can be controlled only to alim-
ited extent through administrative decisions [56, 57]. Predicting the “false
acceptance” and “false rejection” rates, and system throughput, user accep-
tance and cost savings for operational systems from test data, is a
surprisingly difficult task.

For the users, the questions are simple: “Is this system easier, faster,
friendlier and more convenient than the alternatives?”. These issues, too,
are highly application-, technology- and marketing-specific.

Consequently, it is impossible to state that a single biometric character-
istic is “best” for all applications, populations, technologies and adminis-
tration policies. Yet some biometric characteristics are clearly more
appropriate than others for any particular application. System administra-
tors wishing to employ biometric authentication need to articulate clearly
the specifics of their application. In the following sections, we look more
carefully at the distinctions between applications.

1.4 The Applications

The operational goals of biometric applications are just as variable as the
technologies: some systems search for known individuals; some search for
unknown individuals; some verify a claimed identity; some verify an
unclaimed identity; and some verify that the individual has no identity in
the system at all. Some systems search one or multiple submitted samples
against a large database of millions of previously stored “templates” - the
biometric data given at the time of enrollment. Some systems search one or
multiple samples against a database of a few “models” - mathematical rep-
resentations of the signal generation process created at the time of enroll-
ment. Some systems compare submitted samples against models of both
the claimed identity and impostor identities. Some systems search one or
multiple samples against only one “template” or “model”.

And the application environments can vary greatly - outdoors or
indoors, supervised or unsupervised, with people trained or not trained in
the use of the acquisition device.

To make sense out of all of the technologies, application goals and envi-
ronments, we need a systematic method of approach - taxonomies of uses
and applications.
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1.5 A Taxonomy of Uses

A biometric system can be designed to test one of only two possible
hypotheses: (1) that the submitted samples are from an individual known
to the system; or (2) that the submitted samples are from an individual not
known to the system. Applications to test the first hypothesis are called
“positive identification” systems (verifying a positive claim of enrollment),
while applications testing the latter are “negative identification” systems
(verifying a claim of no enrollment). All biometric systems are of one type
or the other. This is the most important distinction between systems, and
controls potential architectures, vulnerabilities and system error rates.

“Positive” and “negative”identification are “duals” of each other. Positive
identification systems generally! serve to prevent multiple users of a single
identity, while negative identification systems serve to prevent multiple
identities of a single user. In positive identification systems, enrolled tem-
plate or model storage can be centralized or decentralized in manner,
including placement on optically read, magnetic stripe or smart cards.
Negative identification systems demand centralized storage. Positive iden-
tification systems reject a user’s claim to identity if no match between sub-
mitted samples and enrolled templates is found. Negative identification
systems reject a user’s claim to no identity if a match is found. Regardless of
type of system, false rejections are a nuisance to users and false acceptances
allow fraud.

An example of a positive identification system is the use of biometrics
for employee access control at San Francisco International Airport. Hand
geometry has been used since the early 1990s to control access by
employees to secured airport areas. There are currently 180 readers used by
about 18,000 enrolled users. Employees activate the system by swiping a
magnetic stripe identity card through a reader. The purpose of the system
is to limit use of the identification card to the enrolled owner, thereby pro-
hibiting use of the card by multiple users. Although the 9-byte template
could be stored on the magnetic stripe, in this case it is stored centrally to
allow updating upon successful use. The stored hand shape template
indexed to the card is transmitted from the central server to the access con-
trol device. The user then places the right hand in the hand geometry
reader, making the implicit claim, “I am the user who is enrolled to use this
card”. If the submitted hand sample is found to be “close enough” to the
stored template, the user’s claim is accepted.

Santa Clara County,located in California near the San Francisco Interna-
tional Airport, requires the fingerprints of both left and right index fingers

1 Surveillance systems are also “positive” and “negative”, but do not seek to prevent
either multiple users of a single identity or multiple identities of a single user. A
surveillance system for positive identification tests the hypothesis that all persons
are on a list of authorized personnel. A negative system tests the hypothesis that no
person is on the list of forbidden personnel.
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from all applicants for social service benefits. Citizens are only eligible for
benefits under a single identity and must attest upon enrollment that they
are not already enrolled in the system. Consequently, this biometric system
is for “negative identification”. When an applicant applies for benefits, he
or she places the index fingers on an electronic scanner with the implicit
claim, “I am not known to this system”. The submitted fingerprints are
searched against the entire centralized database of enrolled persons -
although to facilitate the search, the prints in the database might be parti-
tioned by gender. If no match is found, the claim of non-identity in the
system is accepted.

Use of biometrics in positive identification systems can be voluntary
because alternative methods for verifying a claimed identity exist. Those
electing not to use biometrics can have their identity verified in other ways,
such as by presentation of a passport or driver’s license. Use of biometrics
in negative identification systems must be mandatory for all users because
no alternative methods exist for verifying a claim of no known identity.

Those wishing to circumvent a positive identification system need to
create a false match by impersonating an enrolled user. The possibility of
biometric mimicry and forgery has been recognized since the 1970s [47, 58,
59]. Those wishing to circumvent a negative identification system need to
submit altered samples not matching a previous enrollment. Table 1.1 sum-
marizes these differences.

Historically, a distinction has been made between systems that verify a
claimed identity and those that identify users without a claim of identity,
perhaps returning a result that no identity was found. Some systems com-
pare a single input sample to a single stored template or model to produce a
“verification”, or compare a single input sample to many stored templates
to produce an “identification”. Identification systems are said to compare

Table 1.1 Identification: “positive” and “negative”

Positive Negative

To prove | am someone known to the To prove | am not someone known to the
system system

To prevent multiple users of a single To prevent multiple identities of a single
identity user

Comparison of submitted sample to single  Comparison of submitted sample to all
claimed template - “one-to-one” under enrolled templates - “one-to-many”

the most common system design

A “false match” leads to “false acceptance” A “false match” or a “failure to acquire”
leads to a “false rejection”

A “false non-match” or a “failure to A “false non-match” leads to a “false
acquire” leads to a “false rejection” acceptance”

Alternative identification methods exist No alternative methods exist

Can be voluntary Must be mandatory for all

Spoofed by submitting someone else’s Spoofed by submitting no or altered

biometric measures measures
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samples from one person to templates from many persons, with verifica-
tion being the degenerate case of “many” equal to one. In the mid-1990s,
several companies began to promote “PIN-less verification” systems, in
which verification was accomplished without a claim to identity. The “veri-
fication/identification” dichotomy has been further clouded by the devel-
opment of surveillance and modern “few-to-many” access control systems,
which cannot be consistently classified as either “verification” or “identifi-
cation”. The uses and search strategies of biometric systems have expanded
to the point where these distinctions of “verification/identification” and
“one-to-one/one-to-many” are no longer fully informative.

Ultimately, a biometric system can only link a submitted sample to an
enrolled template or model: that record created upon first use of the system
by a person. That enrollment template/model need not be connected with
any identifying information, such as a name or registration number. In fact,
biometric measures and the enrollment templates/models derived from
them contain no information about name, age, nationality, race or gender.
Consequently, use of a biometric system without linkages of stored data to
common identifiers allows for anonymous authentication. If system
administrators have a need to connect the stored biometric data to other
information, such as a name, that must be done by the presentation and
human certification of trusted identifying credentials at the time of enroll-
ment. Subsequent identification by the biometric system is no more reli-
able than this source documentation. But once that link has been made,
subsequent identifications can be made without reference to the original
source documents.

1.6 A Taxonomy of Application Environments

In the early 1990s, as we gained experience with the use of biometric
devices, it became apparent that variations in the application environment
had a significant impact on the way the devices performed. In fact,accurate
characterization of the operational environment is primary in selecting
the best biometric technology and in predicting the system’s operational
characteristics. In this section, we will present a method for analyzing a
proposed operational environment by differentiating applications based
on partitioning into six categories beyond the “positive” and “negative”
applications already discussed.

1.6.1 Overt Versus Covert

The first partition is “overt/covert”. If the user is aware that a biometric
identifier is being measured, the use is overt. If unaware, the use is covert.
Almost all conceivable access control and non-forensic applications are
overt. Forensic applications can be covert.
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1.6.2 Habituated Versus Non-Habituated

The second partition, “habituated/non-habituated”, applies to the
intended users of the application. Users presenting a biometric trait on a
daily basis can be considered habituated after a short period of time. Users
who have not presented the trait recently can be considered “non-habitu-
ated”. A more precise definition will be possible after we have better infor-
mation relating system performance to frequency of use for a wide
population over a wide field of devices. If all the intended users are “habitu-
ated”, the application is considered a “habituated” application. If all the
intended users are “non-habituated”, the application is considered “non-
habituated”. In general, all applications will be “non-habituated” during
the first week of operation, and can have a mixture of habituated and non-
habituated users at any time thereafter. Access control to a secure work area
is generally “habituated”. Access control to a sporting event is generally
“non-habituated”.

1.6.3 Attended Versus Non-Attended

A third partition is “attended/unattended”, and refers to whether the use of
the biometric device during operation will be observed and guided by
system management. Non-cooperative applications will generally require
supervised operation, while cooperative operation may or may not. Nearly
all systems supervise the enrollment process, although some do not [4].

1.6.4 Standard Versus Non-Standard Environment

A fourth partition is “standard/non-standard operating environment”. If
the application will take place indoors at standard temperature (20 °C),
pressure (1 atm), and other environmental conditions, particularly where
lighting conditions can be controlled, it is considered a “standard environ-
ment” application. Outdoor systems, and perhaps some unusual indoor
systems, are considered “non-standard environment” applications.

1.6.5 Public Versus Private

A fifth partition is “public/private”. Will the users of the system be cus-
tomers of the system management (public) or employees (private)? Clearly,
attitudes toward usage of the devices, which will directly affect perfor-
mance, vary depending upon the relationship between the end-users and
system management.

1.6.6 Open Versus Closed

A sixth partition is “open/closed”. Will the system be required, now or in
the future, to exchange data with other biometric systems run by other
management? For instance, some US state social services agencies want to
be able to exchange biometric information with other states. If a system is
to be open, data collection, compression and format standards are
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required. A closed system can operate perfectly well on completely propri-
etary formats.

This list is open, meaning that additional partitions might also be appro-
priate. We could also argue that not all possible partition permutations are
equally likely or even permissible.

1.6.7 Examples of the Classification of Applications

Every application can be classified according to the above partitions. For
instance, the positive biometric identification of users of the Immigration
and Naturalization Service’s Passenger Accelerated Service System
(INSPASS) [1, 60], currently in place at Kennedy, Newark, Los Angeles,
Miami, Detroit, Washington Dulles, Vancouver and Toronto airports for rap-
idly admitting frequent travelers into the USA, can be classified as a coopera-
tive, overt, non-attended, non-habituated, standard environment, public,
closed application. The system is cooperative because those wishing to
defeat the system will attempt to be identified as someone already holding a
pass. It will be overt because all will be aware that they are required to give a
biometric measure as a condition of enrollment into this system. It will be
non-attended and in a standard environment because collection of the bio-
metric will occur near the passport inspection counter inside the airports,
but not under the direct observation of an INS employee. It will be non-
habituated because most international travelers use the system less than
once per month. The system is public because enrollment is open to any fre-
quent traveler into the USA. It is closed because INSPASS does not exchange
biometric information with any other system.

The negative identification systems for preventing multiple identities of
social service recipients can be classified as non-cooperative, overt,
attended, non-habituated, open, standard environment systems.

Clearly, the latter application is more difficult than the former. Therefore
we cannot directly compare hand geometry and facial recognition technol-
ogies based on the error rates across these very different applications.

1.7 A System Model

Although these devices rely on widely different technologies, much can be
said about them in general. Figure 1.1 shows a generic biometric authenti-
cation system divided into five subsystems: data collection, transmission,
signal processing, decision and data storage. We will consider these subsys-
tems one at a time.

1.7.1 Data Collection

Biometric systems begin with the measurement of a behavioral/physiolog-
ical characteristic. Key to all systems is the underlying assumption that the
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Figure 1.1 A generic biometric system.

measured biometric characteristic is both distinctive between individuals
and repeatable over time for the same individual. The problems in mea-
suring and controlling these variations begin in the data collection
subsystem.

The user’s characteristic must be presented to a sensor. The presentation
of any biometric characteristic to the sensor introduces a behavioral (and,
consequently, psychological) component to every biometric method. This
behavioral component may vary widely between users, between applica-
tions, and between the test laboratory and the operational environment.
The output of the sensor, which is the input data upon which the system is
built, is the convolution of: (1) the biometric measure; (2) the way the mea-
sure is presented; and (3) the technical characteristics of the sensor. Both
the repeatability and the distinctiveness of the measurement are negatively
impacted by changes in any of these factors. If a system is to be open, the
presentation and sensor characteristics must be standardized to ensure
that biometric characteristics collected with one system will match those
collected on the same individual by another system. If a system is to be used
in an overt, non-cooperative application, the user must not be able to will-
fully change the biometric or its presentation sufficiently to avoid being
matched to previous records.
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Figure 1.2 Fingerprint, hand and iris system input images.

Figure 1.2 shows input images from fingerprint, hand geometry and iris
recognition systems.

1.7.2 Transmission

Some, but not all, biometric systems collect data at one location but store
and/or process it at another. Such systems require data transmission. If a
great amount of data is involved, compression may be required before
transmission or storage to conserve bandwidth and storage space. Figure
1.1 shows compression and transmission occurring before the signal pro-
cessing and image storage. In such cases, the transmitted or stored com-
pressed data must be expanded before further use. The process of
compression and expansion generally causes quality loss in the restored
signal, with loss increasing with increasing compression ratio. The com-
pression technique used will depend upon the biometric signal. An inter-
esting area of research is in finding, for a given biometric technique,
compression methods with minimum impact on the signal-processing
subsystem.

If a system is to be open, compression and transmission protocols must
be standardized so that every user of the data can reconstruct the original
signal. Standards currently exist for the compression of fingerprints
(Wavelet Scalar Quantization), facial images (JPEG), and voice data (Code
Excited Linear Prediction).

1.7.3 Signal Processing

Having acquired and possibly transmitted a biometric characteristic, we
must prepare it for matching with other like measures. Figure 1.1 divides
the signal-processing subsystem into four tasks: segmentation, feature
extraction, quality control, and pattern matching.

Segmentation is the process of finding the biometric pattern within the
transmitted signal. For example, a facial recognition system must first find
the boundaries of the face or faces in the transmitted image. A speaker
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verification system must find the speech activity within a signal that may
contain periods of non-speech sounds. Once the raw biometric pattern of
interest has been found and extracted from larger signal, the pattern is sent
to the feature extraction process.

Feature extraction is fascinating. The raw biometric pattern, even after
segmentation from the larger signal, contains non-repeatable distortions
caused by the presentation, sensor and transmission processes of the
system. These non-controllable distortions and any non-distinctive or
redundant elements must be removed from the biometric pattern, while at
the same time preserving those qualities that are both distinctive and
repeatable. These qualities expressed in mathematical form are called “fea-
tures”. In a text-independent speaker recognition system, for instance, we
may want to find the features, such as the mathematical frequency relation-
ships in the vowels, that depend only upon the speaker and not upon the
words being spoken, the health status of the speaker, or the speed, volume
and pitch of the speech. There are as many wonderfully creative mathemat-
ical approaches to feature extraction as there are scientists and engineers
in the biometrics industry. You can understand why such algorithms are
always considered proprietary. Consequently,in an open system, the “open”
stops here.

In general, feature extraction is a form of non-reversible compression,
meaning that the original biometric image cannot be reconstructed from
the extracted features. In some systems, transmission occurs after feature
extraction to reduce the requirement for bandwidth.

After feature extraction, or maybe even before, we will want to check to
see if the signal received from the data collection subsystem is of good
quality. If the features “don’t make sense” or are insufficient in some way, we
can conclude quickly that the received signal was defective and request a
new sample from the data collection subsystem while the user is still at the
sensor. The development of this “quality control” process has greatly
improved the performance of biometric systems in the last few short years.
On the other hand, some people seem never to be able to present an accept-
able signal to the system. If a negative decision by the quality control
module cannot be overridden, a “failure to enroll” error results.

The feature “sample”, now of very small size compared to the original
signal, will be sent to the pattern matching process for comparison with
one or more previously identified and stored feature templates or models.
We use the term “template” to indicate stored features. The features in the
template are of the same type as those of a sample. For instance, if the
sample features are a “vector” in the mathematical sense, then the stored
template will also be a “vector”. The term “model” is used to indicate the
construction of a more complex mathematical representation capable of
generating features characteristic of a particular user. Models and features
will be of different mathematical types and structures. Models are used in
some speaker and facial recognition systems. Templates are used in finger-
print, iris, and hand geometry recognition systems.

The term “enrollment” refers to the placing of a template or model into
the database for the very first time. Once in the database and associated



Chapter 1 - An Introduction to Biometric Authentication Systems 13

with an identity by external information (provided by the enrollee or
others), the enrollment biometric data is referred to as the template or
model for the individual to which it refers.

The purpose of the pattern matching process is to compare a presented fea-
ture sample to the stored data, and to send to the decision subsystem a quanti-
tative measure of the comparison. An exception is enrollment in systems
allowing multiple enrollments. In this application, the pattern matching pro-
cess can be skipped. In the cooperative case where the user has claimed an
identity or where there is but a single record in the current database (which
might be a magnetic stripe card), the pattern matching process might only
make a comparison against a single stored template. In all other cases, such as
large-scale identification, the pattern matching process compares the present
sample to multiple templates or models from the database one at a time, as
instructed by the decision subsystem, sending on a quantitative “distance”
measure for each comparison. In place of a “distance” measure, some systems
use “similarity” measures, such as maximum likelihood values.

The signal processing subsystem is designed with the goal of yielding
small distances between enrolled models/templates and later samples from
the same individual and large distances between enrolled models/tem-
plates and samples of different individuals. Even for models and samples
from the same individual, however, distances will rarely, if ever, be zero, as
there will always be some non-repeatable biometric-, presentation-,
sensor- or transmission-related variation remaining after processing.

1.7.4 Storage

The remaining subsystem to be considered is that of storage. There will be
one or more forms of storage used, depending upon the biometric system.
Templates or models from enrolled users will be stored in a database for
comparison by the pattern matcher to incoming feature samples. For sys-
tems only performing “one-to-one” matching, the database may be distrib-
uted on smart cards, optically read cards or magnetic stripe cards carried
by each enrolled user. Depending upon system policy, no central database
need exist, although in this application a centralized database can be used
to detect counterfeit cards or to reissue lost cards without re-collecting the
biometric pattern.

The database will be centralized if the system performs one-to-N
matching with N greater than one, as in the case of identification or “PIN-
less verification” systems. As N gets very large, system speed requirements
dictate that the database be partitioned into smaller subsets such that any
feature sample need only be matched to the templates or models stored in
one partition, or indexed by using an appropriate data structure which
allows the templates to be visited in an advantageous order during the
retrieval [61]. These strategies have the effect of increasing system speed
and decreasing false matches, at the expense of increasing the false non-
match rate owing to partitioning errors. This means that system error rates
do not remain constant with increasing database size and identification
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systems do not scale linearly. Consequently, database partitioning/
indexing strategies represent a complex policy decision [56].

If it may be necessary to reconstruct the biometric patterns from stored
data, raw (although possibly compressed) data storage will be required.
The biometric pattern is generally not reconstructable from the stored
templates or models, although some methods [41] do allow a coarse recon-
struction of patterns from templates. Further, the templates themselves are
created using the proprietary feature extraction algorithms of the system
vendor. The storage of raw data allows changes in the system or system
vendor to be made without the need to re-collect data from all enrolled
users.

1.7.5 Decision

The decision subsystem implements system policy by directing the data-
base search, determines “matches” or “non-matches” based on the distance
or similarity measures received from the pattern matcher, and ultimately
makes an “accept/reject” decision based on the system policy. Such a deci-
sion policy could be to reject the identity claim (either positive or negative)
of any user whose pattern could not be acquired. For an acquired pattern,
the policy might declare a match for any distance lower than a fixed
threshold and “accept” a user identity claim on the basis of this single
match, or the policy could be to declare a match for any distance lower than
a user-dependent, time-variant, or environmentally linked threshold and
require matches from multiple measures for an “accept” decision. The
policy could be to give all users, good guys and bad guys alike, three tries to
return a low distance measure and be “accepted” as matching a claimed
template. Or, in the absence of a claimed template, the system policy could
be to direct the search of all, or only a portion, of the database and return a
single match or multiple “candidate” matches. The decision policy
employed is a management decision that is specific to the operational and
security requirements of the system. In general, lowering the number of
false non-matches can be traded against raising the number of false
matches. The optimal system policy in this regard depends both upon the
statistical characteristics of the comparison distances coming from the
pattern matcher, the relative penalties for false match and false non-match
within the system, and the a priori (guessed in advance) probabilities thata
user is, in fact, an impostor. In any case, in the testing of biometric devices,
it is necessary to decouple the performance of the signal processing
subsystem from the policies implemented by the decision subsystem.

1.8 Biometrics and Privacy

Whenever biometric identification is discussed, people always want to
know about the implications for personal privacy. If a biometric system
is used, will the government, or some other group, be able to get personal
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information about the users? Biometric measures themselves contain
no personal information. Hand shape, fingerprints or eye scans do not
reveal name, age, race, gender, health or immigration status. Although
voice patterns can give a good estimation of gender, no other biometric
identification technology currently used reveals anything about the person
being measured. More common identification methods, such as a driver’s
license, reveal name, address, age, gender, vision impairment, height and
even weight! Driver’s licenses, however, may be easier to steal or counterfeit
than biometric measures.

Biometric measures can be used in place of a name, Social Security
number or other form of identification to secure anonymous transactions.
Walt Disney World sells season passes to buyers anonymously, then uses
finger geometry to verify that the passes are not being transferred. Use of
iris or fingerprint recognition for anonymous health care screening has
also been proposed. A patient would use an anonymous biometric measure,
not a name or Social Security number, when registering at a clinic. All
records held at the clinic for that patient would be identified, linked and
retrieved only by the measure. No one at the clinic, not even the doctors,
would know the patient’s “real” (publicly recognized) identity.

The real fear is that biometric measures will link people to personal data,
or allow movements to be tracked. After all, credit card and phone records
canbeusedin court to establish a person’s activities and movements. There
are several important points to be made on this issue.

Phone books are public databases linking people to their phone
number. These databases are even accessible on the Internet. Because
phone numbers are unique to phone lines?, “reverse” phone books also
exist, allowing a name to be determined from a phone number. Even if a
number is unlisted, all information on calls made from that number may
be available to law enforcement agencies through the subpoena process.
There are no public databases, however, containing biometric identifiers,
and there are only a few limited-access government databases. Five US
states have electronic fingerprint records of social service recipients
(Arizona, California, Connecticut, New York and Texas); six states (Cali-
fornia, Colorado, Georgia, Hawaii, Oklahoma and Texas) maintain elec-
tronic fingerprints of all licensed drivers®; nearly all states maintain
copies of driver’s license and social service recipient photos; the FBI and
state governments maintain fingerprint databases on convicted felons
and sex offenders; and the federal government maintains hand geometry
records on those who have voluntarily requested border crossing cards
[62]. General access to this data is limited to the agencies that collected it,

2 Inthe days of multi-user “party lines” this was not true, and phone numbers did not
uniquely map to phone lines and households. Such “party lines” are now mostly
gone, allowing phone numbers to indicate a user household or business uniquely.

3 West Virginia maintains a voluntary fingerprint database on drivers who wish to
use biometric identification.
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but like credit card and phone “toll records”, this information can be
released or searched by law enforcement groups acting under court order.

Unlike phone books, however, databases of biometric measures cannot
generally be reversed to reveal names from measures because biometric
measures, although distinctive, are not unique. Fingerprint, retinal and iris
databases may be exceptions, allowing reversal if the biometric data was
carefully collected. But general biometric measures do not serve as useful
pointers to other types of data. The linking of records is always done by
unique identifiers such as Social Security and credit card numbers. Bio-
metric measures are not generally useful in this regard, even if databases
linking information to measures were to exist. For these reasons, biometric
measures are not useful for tracking the movements of people, as is already
possible using telephone and credit card numbers.

Databases of biometric images, and the numerical models or templates
derived from them, are often encrypted with the intention of inhibiting their
compromise in bulk. But compromise of individual measures cannot always
be prevented by protecting databases and transmission channels because
biometric measures, although privately owned, are sometimes publicly
observable (e.g. a photo of a person’s face can be taken with a camera or
downloaded from a web page).In general,biometric measures are not secret,
even if it might be quite complicated to acquire usable copies (e.g. a retinal
map) without the cooperation of the owner. When used for security, bio-
metric characteristics are more like public keys than private keys. Unlike
public keys, however, biometric measures cannot be revoked if stolen or
mimicked. The industry is currently working on methods for “live-ness
testing” and revocation, hoping to ameliorate these problems [63-65].

Table 1.2 summarizes the privacy issues raised by the use of biometrics.

Table 1.2 Biometrics and privacy.

1. Unlike more common forms of identification, biometric measures contain no
personal information and are more difficult to forge or steal.

2. Biometric measures can be used in place of a name or Social Security number to
secure anonymous transactions.

3. Some biometric measures (face images, voice signals and “latent” fingerprints left
on surfaces) can be taken without a person’s knowledge, but cannot be linked to an
identity without a pre-existing invertible database.

4. A Social Security or credit card number, and sometimes even a legal name, can
identify a person in a large population. This capability has not been demonstrated
using any single biometric measure.

5. Like telephone and credit card information, biometric databases can be searched
outside of their intended purpose by court order.

6. Unlike credit card, telephone or Social Security numbers, biometric characteristics
change from one measurement to the next.

7. Searching for personal data based on biometric measures is not as reliable or
efficient as using better identifiers, like legal name or Social Security number.

8. Biometric measures are not always secret, but are sometimes publicly observable
and cannot be revoked if compromised.
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1.9 The Road Ahead

Market estimates put the total hardware sales for the industry at US$6.6
million in 1990 and nearly US$200 million in 2000 [66]. Whether the next
decade will result in a similar 2500% increase will depend upon user
demand for positive identification biometrics. That demand will be created
by imaginatively created systems designed for convenience, friendliness,
cost-effectiveness and ease of use.

The use of negative identification biometrics will be fueled by govern-
ment requirements to limit citizens to a single identity in driver licensing,
social service and other civil applications [67, 68]. That demand will
require the development of stronger criteria for cost/benefit assessment,
security assurance,and privacy protection. Although we cannot predict the
future rate of growth of the industry with any certainty, we do know that
long-term growth is inevitable. With this book, we hope to stimulate fur-
ther inquiry into the technologies, applications and issues that will shape
this industry in the years to come.
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Fingerprint Identification
Technology

Robert Allen, Pat Sankar and Salil Prabhakar

2.1 History

Archaeological evidence of the use of fingerprints to associate a person
with an event or transaction has been reported from ancient China,
Babylonia, and Assyria as early as 6,000 BC [1].In 1686, Marcello Malpighi,
an anatomy professor at the University of Bologna, wrote in a paper that
fingerprints contained ridges, spirals and loops, but did not refer to their
possible use for identification [2].In 1823, John Purkinji, an anatomy pro-
fessor at Breslau University published a thesis in which he discussed nine
types of fingerprint patterns; he also did not refer to the possibility of their
use for identification [3]. However, this early evidence and documentation
led researchers and practitioners to explore many uses of fingerprints,
including human identification.

2.1.1 Early Biometric Efforts

2.1.1.1 Alphonse Bertillon

Alphonse Bertillon, a Paris police department employee and son of an
anthropologist, developed a system of anthropometry in 1880 as a means
for classifying criminals and used this system to identify recidivists [4].
Anthropometry (a system of cataloging an individual’s body measure-
ments such as height, weight, lengths of arm, leg, index finger etc.) was
shown to fail in a famous case at Leavenworth Prison, where two prisoners,
both named William West, were found to have nearly identical measure-
ments even though they claimed not to be biologically related [5]. Bertillon
had theoretically calculated the probability of occurrence of such an event
as one in four million.

2.1.1.2 William Herschel

In 1856 Sir William Herschel, a British Chief Magistrate in Jungipoor, India,
used fingerprints (actually palmprints) to certify native contracts, playing
more on the superstitious beliefs of the natives than on science [6]. As his
fingerprint collection grew, Herschel came to the conclusion that finger-
prints could be used to prove or disprove identity.

21



22 Biometric Systems

2.1.1.3 Henry Faulds

During the 1870s, Dr Henry Faulds, a British surgeon in Japan, after
noticing finger marks on ancient pottery, studied fingerprints, recognized
the potential for identification, and devised a method for classifying fin-
gerprint patterns [7]. Faulds is also credited with the first fingerprint iden-
tification of a greasy fingerprint left on an alcohol bottle. Finally, in 1880,
Faulds forwarded his classification system and method for recording fin-
gerprints to Charles Darwin, who in turn forwarded this material to his
cousin, Sir Francis Galton.

2.1.1.4 Francis Galton

Francis Galton, an anthropologist,began a systematic study of fingerprints
as a means of identification in the 1880s [8]. In 1892, he published the first
book on fingerprints, entitled Fingerprints [9]. He added scientific support
to what Herschel and Faulds suspected: that fingerprints are permanent
throughout life, and that no two fingerprints are identical (by calculating
the odds of two individual fingerprints being identical to be 1 in 64 billion).
Galton devised a system of classifying fingerprints into what are now called
“Galton pattern types”. He also identified minute fingerprint characteris-
tics (called “minutiae” and often referred to as “Galton details”) that are
used to determine whether two fingerprints match.

2.1.1.5 Juan Vucetich

In 1891, Juan Vucetich, an Argentinian police officer, began the first sys-
tematic filing of fingerprints using the Galton pattern types. In 1892,
Vucetich made his first criminal fingerprint identification in a murder
investigation, using a bloody fingerprint to prove the identity of the
murderer [1].

2.1.1.6 Edward Henry

In 1897, Sir Edward Henry, a British police officer in India, established a
modified fingerprint classification system using Galton’s observations.
This system was ultimately adopted by Scotland Yard in 1901 and is still
used in many English-speaking countries [10].

2.2 Applications of Fingerprints

2.2.1 Forensics

Fingerprints are perhaps the most widely used identifier in the field of
forensics. They are used not only to link suspects to crime scenes, but also
to link persons arrested under another name to previous arrests, identify
deceased persons (both criminal and non-criminal), and to associate per-
sons with questioned documents. For over a century, forensic applications
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have been the primary focus of fingerprint identification techniques.
Manual paper or card files have, for most of that time, provided the source
of the fingerprint data, and several classification techniques have been
used to organize these records in order to divide the search process into
sizes manageable by humans. Additional manual filing systems have been
developed to organize fingerprints lifted from crime scenes (called
“latents”) into manageable groups that may have to be manually searched
for known suspects. The cumbersome and time-consuming nature of
filing, searching and matching fingerprints manually led to efforts in auto-
mating parts of the process as computer technology became more readily
available to law enforcement agencies.

2.2.2 Genetics

Asindicated in the brief historical references above, some of the early work
and observations involving fingerprints were derived from the work of
early researchers in genetics, such as Sir Francis Galton. There is a rather
large body of work tracing the genetic history of population groups
through the study of fingerprint pattern characteristics [11]. There is also
evidence of work to associate certain fingerprint characteristics with cer-
tain birth defects and diseases in an attempt to study the correlation
between these unique characteristics and a predisposition to such defects
[12]. Such studies triggered much of the work to establish the unique fin-
gerprint features (patterns, minutiae, pores) that led to the use of finger-
prints as the most reliable form of identification.

2.2.3 Civil and Commercial

The brief history of fingerprints above also indicates the early use of fin-
gerprints in associating an individual to an item or event. It is not clear
whether the very early innovators realized that fingerprints could be used
for identification or only took advantage of the fact that people readily
believed that to be so. This is not much different from the requirement over
the last 60 years for fingerprinting as a prerequisite for obtaining a driver
license in some parts of the USA, despite the inability to use the finger-
prints, except in extreme situations where a driver license number might be
known.

In more recent times, fingerprints have been applied to application/reg-
istration forms in an attempt to associate applicants with certain benefits
(welfare [13],voting, banking [14] etc.). In most of these uses, a key compo-
nent has been missing: the ability to effectively search any large fingerprint
database in a reasonable amount of time. To further complicate matters,
fingerprint image capture is done by people with little or no training in the
proper collection methods. Examination of sample fingerprint images
from such collections has shown that captured fingerprints do not contain
consistent areas of the finger. It is not uncommon to find as much as three-
quarters of the captured fingerprints to be from the tip, right or left side of
the finger rather than from the preferred “core” region at the center.
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2.2.4 Government

The most common application of fingerprint identification has been, and
still is, to associate an individual with a criminal record. Individuals
inducted into the military and those applying for a position with the gov-
ernment or a government contractor have been required to submit finger-
prints for comparison with criminal records on file at the Federal Bureau of
Investigation (FBI). Indeed, there are well over 200 million sets of such fin-
gerprint records stored in Fairmont, West Virginia (at one time in file cabi-
nets occupying several floors of an office building in Washington, DC). In
this case, all 10 fingerprints (called a “tenprint”) have been recorded for
comparison.

In many countries outside North America and Western Europe, it has
been, and still is,a common practice to capture fingerprints for all individ-
uals when they reach a certain age (e.g. 16 years) in order to issue a national
identity card. Re-registration of these individuals is required often (e.g.
every 5 years), at which time a search in the fingerprint database is made to
confirm that the individual is indeed the original applicant (for fraud pre-
vention). Traditionally, such systems have usually employed automated
searches of a name/number file and a manual comparison of the finger-
prints to confirm the identity.

2.3 Early Systems

Most of the early fingerprint identification systems were put into place in
major metropolitan areas or as national repositories. Juan Vucetich estab-
lished a fingerprint file system in Argentina in 1891, followed by Sir Edward
Henryin 1901 at Scotland Yard in England. The first fingerprint identifica-
tion system in the USA was put in place by the New York Civil Service Com-
mission in 1902, followed by a system in the New York State prison system
in 1903. At the national level in the USA, the Federal Penitentiary in Kansas
instituted a fingerprint system (with the assistance of Scotland Yard) in
1904.From 1905 to the early 1920s, the US military and many state and local
law enforcement agencies inaugurated fingerprint identification systems.

It was not until 1924, when the FBI established an Identification Division
by an act of Congress, that a criminal file based on the work done by Sir
Edward Henry was created. Over the next 47 years, the FBI manually
arranged over 200 million fingerprint records into files using the Henry
system of classification.

2.3.1 Manual Card Files

Manual fingerprint card files were usually organized by a pattern classifi-
cation system based on combination of the patterns on each of the ten fin-
gers of individuals. Two similar classification systems were developed, one
by Sir Edward Henry in the UK, and one by Juan Vucetich in Argentina. The
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Henry system became a standard for many countries outside South
America, while the Vucetich system was used primarily in South America.
In the Henry classification system, numerical weights are assigned to fin-
gers with a whorl pattern [15]. A bin number, based on the sum of the
weights for the right hand and sum of the weights for the left hand is com-
puted to generate 1,024 possible bins. Letter symbols are assigned to fin-
gers: capital letters to the index fingers and lower-case letters to other
fingers. These are combined with the numeric code to further subdivide the
1,024 bins. Each of these pattern groupings defines bins into which finger-
print cards with the same pattern group are placed. A bin might be a folder
in a file drawer or several file drawers if it contains a common pattern
group and the file is large.

Two problems existed in manual files: first, the patterns assigned to each
finger might not be exactly the same on each occurrence of the same card;
and second, if a pattern type error was made, the search might not reach the
correct bin. In the early stages of automation, when more sophisticated
means of searching the fingerprint database became possible, the accuracy
of the manual fingerprint system was estimated to be only 75%. To further
complicate matters, the distribution of pattern types is not uniform; thus
there were a few bins that contained most of the fingerprint cards. For
example, nearly 65% of fingers have loop patterns,30% have whorl patterns
and the remaining 5% have arch patterns. To overcome this difficulty, it was
necessary to devise secondary (and tertiary) breakdowns of the bin num-
bers to subdivide the large bins. Although this aggravated the error possi-
bilities alluded to above, it made the search more tractable for large files.

While the reliability of the search could be compromised by the factors
mentioned above, the selectivity of a search using the binning system
developed by Henry and Vucetich was a big improvement over not using
bins at all. However, in the case of arch patterns, the bin was not subdivided
through any of the breakdown schemes used for whorls and loops. As a
result, this bin could become arbitrarily large as the file grew. Thus, in a
large file, a search for a record containing arch patterns on all fingers could
be very difficult. As with many such indexing schemes, there is a trade-off
between selectivity and reliability in a system that reduces manual
searching effort (which has its own inherent errors). The method of
indexing fingerprints using the Henry/Vucetich method introduces many
errors through the often complicated rules for assigning primary, sec-
ondary and tertiary labels to fingerprints. In practice, these errors can be
minimized through rigorous training of human indexers in order to benefit
from the increased search efficiency.

2.3.2 (Classification

Fingerprint classification systems based upon the work of Vucetich and
Henry generally recognize fingerprint patterns as being loops (left or
right), whorls and arches. Figures 2.1(a)-(d) show these four basic finger-
print pattern types, which form the basis of most fingerprint classification
systems. Broadly defined, the patterns are differentiated based on the
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Figure 2.1 Some of the common fingerprint types. The core points are marked with solid white
circles while the delta points are marked with solid black circles.

presence of zero, one or two delta regions. A delta region is defined by a tri-
radial ridge direction at a point. There are transitional patterns between
these three that have been used to define further subdivision of fingerprint
records. Arch patterns have no delta,loops have one delta, and whorls have
two deltas. Transitions from arches to loops occur for small loops and give
rise to the so-called tented arch pattern that appears as a notable cusp to the
arch. Loop patterns have a single delta and tend to transition to the plain
whorl through patterns such as the central pocket loop (C-Whorl) and the
twinned loop (D-Whorl), as seen in Figures 2.1(e) and (f). Whorl patterns
are characterized by two deltas. This is clearly evident in the plain whorl
and double loop whorl, but not so evident in the central pocket whorl pat-
tern. In many instances, the classification decision requires the application
of a topological test to determine whether there is a true re-curve, as neces-
sary for a loop, or a delta present to support a whorl pattern. As the files
become larger, it becomes necessary to further subdivide these basic pat-
terns using ridge tracings and/or ridge counts in order to maintain reason-
ably sized bins. The details of these further subdivisions are interesting to
understand, but beyond the scope of this chapter.

As computers were introduced into the fingerprint identification process
[16],it became desirable to revise some of the pattern subdivisions to make
the search more effective. Initially, the alphanumeric Henry system of clas-
sification was converted to a numeric model that encoded alphanumeric
pattern symbols to numeric form, for both primary and subordinate classi-
fications. Also, since computers could quickly search a database indexed by
fingerprint classification and return record identification numbers, the
manual files could be organized by identification number rather than pat-
tern classifications. In this way, some of the search error could be mini-
mized. However, the reliability of the manual classifications that were
assigned over many years of operation remained questionable. Simply
transcribing the manual codes to more computer-friendly codes had the
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potential to eliminate the manual search and filing errors (probably the
more significant component), but did not offset the original pattern type
assignment errors.

2.3.3 Searching

Searching of a fingerprint database typically involved the use of the finger
patterns, subordinate breakdown (ridge counts/tracings) for loops and
whorls, and alternate patterns for those fingers that had patterns that
might be seen as one of several possibilities. Further, if the subordinate fea-
tures might assume a range of possible values, the various combinations
would need to be searched as well. Many agencies established policies lim-
iting the possible alternate values allowed (for labor considerations), and
the alternate patterns themselves might be suspect, leading to inaccuracy.
At some level, if the comparison of fingerprints was to be done manually,
the resulting search needed to be restrictive enough to ensure an accurate
fingerprint feature comparison. If the number of search candidates were
too large, then the potential for human error in comparison would rise. A
compromise had to be reached that allowed for searches to be conducted in
areasonable time with a reasonable level of accuracy. As the search param-
eter became indexed by computers, searching became less error-prone, but
not completely error-free [17].

2.3.4 Matching

Fingerprint matching prior to automation involved the manual examina-
tion of the so-called Galton details (ridge endings, bifurcations, lakes,
islands, pores etc., collectively known as “minutiae”). Prior to the late
1960s, neither the available computer systems that could display finger-
print images for comparison were affordable, nor a significant number of
digital fingerprint images were available for display. Consequently, the
comparison process was manual, requiring a magnification glass for com-
paring the features of each search print to each of the many candidate
prints manually retrieved from the database files. If the correct record
could be retrieved from the files, it was fairly likely that the comparison
process would identify the individual. It was very unlikely that an incorrect
identification would be made because the fingerprint-matching techni-
cians were rigorously trained and faced sanctions/penalties if they made
any errors. However, it was possible that the correctly matching file record
would not be retrieved (and thus not identified) because of incorrect classi-
fication of the search record, or an incorrectly filed original record.

2.4 Early Automation Efforts

By the mid-1960s, it become apparent to agencies with large fingerprint
files and increasing workloads that some form of automation was required



28 Biometric Systems

to keep labor costs within reasonable bounds. It was also apparent
(although to a lesser extent) that the inaccuracy of the manual systems was
an important performance limitation, especially in large fingerprint files. It
was becoming clear to those agencies that measured the identification
error rates of their systems that classification assignment and search were
significant sources of error that increased as the file size and search
workload grew.

2.4.1 US NBS/NIST Research

In the mid-1960s, the National Institute of Standards and Technology
(NIST) (known as the National Bureau of Standards at the time) initiated
several research projects to automate the fingerprint identification pro-
cess. These efforts were supported by the Federal Bureau of Investigation
(FBI) as part of an initiative to automate many of the processes in the
Bureau. The NIST looked at automatic methods of digitization of inked fin-
gerprint images, the effect of image compression on fingerprint image
quality, classification, extraction of Galton features, and matching of fin-
gerprints (tenprint-to-tenprint and latent-to-tenprint) [17]. The results of
these efforts, together with a collaboration/interaction with private
industry and national agencies (e.g. the Scientific Research and Develop-
ment Branch and the Home Office in the UK), led to important
implementation of this core technology.

2.4.2 Royal Canadian Police

By the mid-1960s, the fingerprint collection of the Royal Canadian
Mounted Police (RCMP) had grown to over a million tenprint records.
Their identification workload was increasing, as was the need to keep labor
costs in check. They investigated the technology available to automate the
search process in their tenprint identification section and ultimately
selected an automated video tape-based filing system that was already in
use in other industries (e.g. railroads and insurance).

The video file system, manufactured by Ampex Corporation, featured a
digital track on a two-inch commercial video tape that could be searched
by a minicomputer. A complex video disk buffering of search data and dis-
play stations capable of presenting single fingerprint images for compar-
ison made it possible to display the record images selected by a
classification-based search of the video tapes. The video-file system was
operational until the mid-1970s, when the RCMP installed the first auto-
mated fingerprint identification system (AFIS).

2.4.3 FBI

In the USA, at about the same time that the RCMP and the UK Home Office
were looking for automation technologies, the FBI was investigating the
possibilities for automating various Identification Division processes,
including the fingerprint identification operations. The identification
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operations received requests to match about 25,000 tenprints daily, had a
criminal fingerprint file of over 20 million tenprint records, and employed
several thousand people to handle the daily workload.

In the mid-1960s, the FBI signed research contracts with three compa-
nies to build a working prototype for scanning FBI fingerprint cards. By the
early 1970s, the prototypes were completed and evaluated for their capabil-
ities. A small-scale test resulted in the selection of one design approach and
a contract was awarded to build five production card readers to begin the
digitization of the tenprint files.

Over the next five or six years, the FBI worked with the computer
industry to build other core technologies, including fingerprint matching
hardware and automated classification software and hardware,and began a
broad-based program to automate several manual functions within the fin-
gerprint identification section. This plan ultimately resulted in an auto-
mated tenprint card-handling system, with functional workstations to
support the manual data entry, classification, validation and completion of
result response.

Study of the automation process continued and system designs were
developed for what would become the next stage of fingerprint automation
at the FBI. By the end of 1994, competition for the Integrated Automated
Fingerprint Identification System (IAFIS) basic demonstration model was
completed. Model systems had to demonstrate the ability to meet the per-
formance requirements defined for the system. By the end of 1995,
Lockheed Martin Corporation was selected to build the IAFIS, and by 1999
the major components were operational.

2.4.4 VUnited Kingdom

In the UK, over about the same time-scale as the FBI, the Home Office was
working within its own Scientific Research and Development Branch
(SRDB), and in cooperation with the computer industry to develop tech-
nology to automate fingerprint processing. The Home Office directed its
attention to the design of the algorithms and processes that were needed
by the National Police Service (NPS) to automate tenprint processing
nationally. At the same time, the Metropolitan Police Service, located at
New Scotland Yard, directed attention to latent fingerprint processing,
and initially working with Ferranti Ltd, developed a prototype latent
encoding and search system. The resulting system provided the finger-
print data entry capability, the encoding of minutiae data for selected
tenprint file entries, and the search and matching of fingerprints to iden-
tify candidates.

The technology developed through these efforts was eventually incorpo-
rated into the model for the National Automated Fingerprint Identification
System (NAFIS) constructed by the SRDB. Several technologies for the
core algorithms were investigated, including not only simulation, but
also implementation into a specific hardware realization. To support these
efforts, SRDB carried out substantial development internally and contracted
with several software houses in the UK to carry out the programming and
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utilizing. For example, the Transputer parallel processing array was evalu-
ated to serve as the execution engine for a variety of tasks. As a result of the
simulation, research and implementation studies, when the NAFIS project
was ready for tender there already existed a great deal of quantitative data on
the requirements of performance and response times and the desired char-
acteristics of the human-machine interfaces.

2.4.5 Japan

At about the same time as interest began to build in the USA and the UK for
the automation of the manual fingerprint processes in the national reposi-
tories, the Japanese National Police (JNP),who had a fingerprint file of over
six million records, also initiated study of the automation possibilities. JNP
posted its technical people to collaborate with researchers at the FBI and
the Home Office on the details of the processing required. The system ulti-
mately developed for the national police contained many of the concepts
included in both the USA and UK efforts.

2.5 The Technology

Certain essential components that are required for the automation of fin-
gerprint searching and matching were already employed by the US military
as a part of both defensive and offensive weapons systems. For example,
imaging devices capable of resolving small objects in a large field were
already in use to identify and classify potential targets. Methods had been
developed for recognizing different signatures of potential targets using
both spatial and frequency domain techniques for separating the signal
from the background clutter. It was natural to look to the organizations
developing these image processing-based military applications for solu-
tions in the application of fingerprint matching. A catalyst for this process
was found in the Law Enforcement Assistance Administration (LEAA),
which was formed in the early 1970s to infuse automation technology into
law enforcement organizations. Through grants and contracts, LEAA
(1968-1977) funded a number of research programs to investigate tech-
niques that could be applied to fingerprint automation projects together
with other operational aspects of the law enforcement.

2.5.1 Scanning and Digitizing

One of the most important elements needed for fingerprint automation
was a method for scanning inked fingerprint forms/cards that would pro-
vide images of sufficient quality for subsequent enhancement, feature
extraction and matching. The FBI initiated a research program to build an
engineering model of a scanner that could sample an object area of 1.5 x
1.5 in at 500 pixels per inch (often called DPI), with an effective sampling
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spot size of 0.0015 in, with a signal-to-noise (S/N) ratio in excess of 100:1,
and digitized to at least 6 bits (64 gray levels). In the late 1960s, these
requirements could only be met by a system that used a cathode ray tube
and a precision deflection system, an array of photomultiplier tubes to
measure the incident and reflected light, and an amplifier-digitizer to con-
vert the electrical signal into a digital value for each pixel. Further, this
system needed to scan the objects (i.e. fingerprint cards) in complete dark-
ness (alight-tight enclosure). Three companies were selected to build these
engineering models to demonstrate the capability to scan, process and
extract minutiae features from an example set of fingerprint cards.

Based on an evaluation of these three competing engineering models, the
supplier of the best model was selected to build a prototype of a fingerprint
card scanner capable of transporting fingerprint cards to and through the
scanner and of processing and extracting features from the captured dig-
ital images. This device was successfully built, delivered and tested by the
FBI in the early 1970s. This prototype formed the basis of a contract to
build at least five such scanning and data capture systems, each capable of
scanning and extracting data from 250 tenprint cards per hour. These five
scanning systems were operational by 1978 and began digitizing the 22 mil-
lion record tenprint files that existed at the FBI at that time. One of the
major drawbacks of this system was that the fingerprint cards had to be
transported into a light-tight area during scanning, and in the event of a
problem manual intervention was not possible.

There were relatively few scanning devices by the late 1970s that met the
technical characteristics requirements of 500 DPI, a 0.0015 inch effective
sample size, greater than 100 S/N ratio and 6 bit dynamic range. Further,
almost all of these scanners were analog devices. A few digital cameras
were available that used analog sensors to produce a digital output, but it
was not until the early 1980s that relatively low cost digital scanners
capable of scanning fingerprints at the required resolution and quality
became available.It was another ten years before the scan quality standards
were clearly articulated in the IAFIS Appendix F specification, which is the
current benchmark for scanning and digital capture of fingerprint images
[18]. The most notable change brought about by the Appendix F specifica-
tion is the gray-scale range requirement of 200 or more gray levels, with no
missing values, for a broad range of input inked fingerprint card samples
(extremely light to extremely dark). In fact, this requires that a scanner is
able to scan and digitize some fingerprint cards at greater than 8 bits and
then compress to an 8-bit dynamic range to satisfy this specification.

Today, there are reasonably priced scanners (under US$10,000) that are
capable of scanning a 1.5 x 1.5 inch fingerprint area at 1,000 (or more) DPI
with a digitizing range of 10 or 12 bits, S/N ratio in excess of 100:1, and dig-
ital controls to extract the desired data range. However, these days thereisa
trend to move away from capturing fingerprints on paper using ink or
other such media. Most of the fingerprint input devices now used in both
criminal and civil fingerprint systems directly scan the fingerprint from
the finger. These scanners are called “live-scan” fingerprint capture
devices. The most common types of live-scan fingerprint devices either
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directly digitize the fingerprint image (by electronically scanning a planar
array of samples) or digitize the fingerprint image created through optical
means (frustrated total internal reflection - FTIR). Many of these live-scan
fingerprint devices are capable of capturing digital data at the quality
levels established by the IAFIS Appendix F specification. If a paper copy of
the fingerprints is required, the fingerprint images can be printed. The FBI
specifies fingerprint image quality for paper copy submissions to them.

The most recent American National Standards Institute (ANSI) standard
for fingerprint data interchange recommends 1,000 DPI resolution to yield
greater definition of minute fingerprint features [19]. Apart from the
obvious issue of the large size of the resulting image files, there are many
other issues related to such high-resolution imaging of fingerprints (e.g.
how to design subsequent image processing algorithms to take advantage
of this high-resolution data).

For many civil and commercial applications, there is no mandate for a set
of ten fingerprints for each individual to be recorded by the system. Often,
it is sufficient for the scanning device to capture a fingerprint from a single
finger. Moreover, it is not necessary to capture a fingerprint image rolled
across the finger from one side of the fingernail to the other. In fact, cap-
turing a “dab” (or “flat”) impression of 1 in? (or even lesser) area of the
finger is quite acceptable. There are many fingerprint sensors available
today that capture areas substantially less than 1 in? (even down to 0.25 in?)
of a single finger. Many of these scanners sample fingerprints at less than
the 500 DPI that is mandated for forensic uses by the IAFIS specifications.
Indeed, thereis not yet a set of specifications articulated for finger scanners
in civil or commercial applications as there is for criminal applications. It
may well be that the device manufacturers will ultimately be required to
address the issue of a common specification for fingerprint image quality
for live-scan devices in these applications. A more likely possibility is that
the environment of these applications will drive the manufacturers to meet
certain minimum scanner quality specifications in order to meet the
performance and interchangeability goals.

In many cases, the live-scan finger scanning devices are implemented
using optical (FTIR and scattering) techniques, using planar fabrication
techniques to build capacitor arrays (various semiconductor charge
transfer techniques) and ultrasound transducers. The optical and ultra-
sound devices generally capture larger areas of the fingerprint, but the
optical devices often suffer more from inconsistent contact (dry finger)
problems over a large sample of people than do the ultrasound devices. The
planar devices capture a substantially smaller area and have more resis-
tance to contact problems, but may have environmental/usability problems
(wear or damage) due to surface fabrication issues that are not yet fully
understood. Only extensive use and testing will resolve the advantages and
disadvantages of these competing designs. However, there is growing evi-
dence that live-scan fingerprint scanning devices will play a leading role in
many automatic civil and commercial applications as a way to certify an
individual’s identity.
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Figure 2.2 The core is within the octagon, a ridge bifurcation within the circle, a delta within the
triangle, and a ridge ending within the square.

2.5.2 Enhancement

A fingerprint image is shown in Figure 2.2. A ridge bifurcation minutia is
marked with a circle, and a ridge ending minutia is marked with a square.
Ridge bifurcations and endings represent the two types of local fingerprint
singularities used by modern AFIS implementations. To show the finger-
print singularities at the global level in this fingerprint image, the core
point is marked with an octagon and the delta is marked with a triangle.
Traditionally, ridge count is described as the number of ridges between the
core and the delta, that is, along the solid line marked on the fingerprint
image. More recently, the definition of the ridge count has been extended to
the number of ridges between any two points (typically minutiae) in the
fingerprint images.

A crucial element in the processing of digital fingerprint data is the
enhancement of the ridge structure to allow accurate extraction of minute
features. Figure 2.3(a) is an example of an inked fingerprint that has both
good and poor quality areas that must be dealt with during the enhance-
ment process. The histogram of gray levels for this image is shown in Figure
2.4(a) (gray value 0 is at the left and gray value 255 is at the right in this his-
togram). It is apparent that the predominant gray range is somewhat more
than 128 gray values.Initial enhancement may involve the normalization of
the inherent intensity variation in a digitized fingerprint caused either by
the inking (as in this case) or the live-scan device. One such process - local
area contrast enhancement (LACE) - is useful to provide such normaliza-
tion through the scaling of local neighborhood pixels in relation to a calcu-
lated global mean. The form of LACE used here calculates a global pixel
mean (GlobalMean) for the entire image, and then computes a local mean
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and variance for a 15 X 15 neighborhood about each pixel (building a table
of statistics over the entire image). A pixel gain is calculated as indicated
below, and subjected to the constraints 10 < PixelGain <50:

PixelGain = GlobalGain x (1 /N Local Variance) (2.1)

The GlobalGain factor is calculated using the GlobalMean and a

GlobalCorrection factor which is determined for fingerprint images empir-

ically (a typical value could be 0.5). This calculation is as follows:
GlobalGain = GlobalCorrection X GlobalMean (2.2)

A new intensity for each original pixel (RawPixel) of the image is calculated
using the PixelGain and LocalMean as follows:

Newlntensity = PixelGain X (RawPixel — LocalMean) + LocalMean (2.3)

Figure 2.3 (a) Aninked fingerprintimage; (b) the results of the local area contrast enhancement
algorithm on (a).
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Figure 2.4 (a), (b): Histograms of fingerprint images in Figures 2.3(a) and (b), respectively.
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Figure 2.3(b) shows an example of the application of LACE to the image
in Figure 2.3(a). The histogram for the image after the enhancement is
shown in Figure 2.4(b). Note that the gray range now spans the full 256 gray
values, with a mean value near 128. By comparing Figure 2.3(b) with Figure
2.3(a), one can clearly see a marked increase in contrast over the entire
image.

Another type of enhancement that can be used to preprocess fingerprint
images is contextual filtering [20,21]. This type of enhancement has the fol-
lowing objectives: (1) provide a low-pass (averaging) effect along the ridge
direction with the aim of linking small gaps and filling impurities due to
pores or noise; and (2) perform a bandpass (differentiating) effect in a
direction orthogonal to the ridges to increase the discrimination between
ridges and valleys and to separate parallel linked ridges. Often, Gabor fil-
ters [22] are used for this type of contextual filtering. Gabor filters have
both frequency-selective and orientation-selective properties and have
optimal joint resolution in both spatial and frequency domains. Conse-
quently, these filters have the ability to minimize the bandwidth required
while maximizing the spatial resolution. An even symmetric two-dimen-
sional Gabor filter has the following form [20] (see Figure 2.5):

2,2
g(x,y:@, f) = exp{—;[zg ();g]}cos(an “Xp) (2.4)
X Y

where 0 is the orientation of the filter and [xp, yy] are the coordinates of
[x, y] after a clockwise rotation of the Cartesian axes by an angle of
(90° - 0):

Xg c0s(90°—60)  sin(90°-0) || x sin@ cosf ][ x -
Yo | =sin(90°—0) cos(90°—6) y " | —cos® sin@ y (2:5)
In the above expression, fis the frequency of a two-dimensional sinusoidal

surface of the fingerprint, and 0, and 0, are the standard deviations of the
Gaussian envelope along the x- and y-axes respectively. As shown in Figure

Figure 2.5 Graphical representation (lateral view and top view) of the Gabor filter defined by the
parameters @ =135°,f=1/5,04= oy=3 [21].
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2.5,a Gabor filter is defined by a sinusoidal wave (the second term of Equa-
tion (2.4)) tapered by a Gaussian (the first term in Equation (2.4)).

To contextually filter a fingerprint image using Gabor filters, the four
parameters (0, f,0,,0,) must be specified. Obviously, the frequency, f, of the
filter is completely determined by the local ridge frequency, and the orien-
tation, 0, is determined by the local ridge orientation. The selection of the
values 0, and o) involves a trade-off. The larger the values, the more robust
the filters are to the noise in the fingerprint image, but are also the more
likely they are to create spurious ridges and valleys. Conversely, the smaller
the values, the less likely the filters are to introduce spurious ridges and val-
leys, but they are then less effective in removing the noise. In fact, from the
Modulation Transfer Function (MTF) of the Gabor filter, it can be shown
that increasing o, ay decreases the bandwidth of the filter and vice versa.

The simplest and most natural approach for extracting the local ridge
orientation field image, D, containing elements 0;;,in a fingerprint image is
based on the computation of gradients in the fingerprint image. The gra-
dient V(x;, y;) at point [x;, y;] of fingerprint image I, is a two-dimensional
vector [V,(x; yj), Vy(x,-, yj)], where V, and Vy components are the deriva-
tives of I'in [x;, y;] with respect to the x and y directions, respectively. It is
well known that the gradient phase angle denotes the direction of the max-
imum pixel-intensity change. Therefore, the direction 6;; of a hypothetical
edge which crosses the region centered at [x;, y;] is orthogonal to the gra-
dient phase angle at [x; yj]. This method, although simple and efficient,
does not provide robust estimates of local ridge orientation in fingerprint
images. As aresult, an alternative method is used to compute thelocal ridge
orientations as the dominant ridge orientation 6;; by combining multiple
gradient estimates within a W xW window centered at [xi> yj] [20]:

1 2G
Oz-j = 90°+—arctan _ X
2 y

Gyx —G
w2 w2
ny = z ZVx(xl- +h,yj +k)-Vy(x,~+h,yj +k),
h=—W /2k=—W/2 (2.6)
w2 w2

Gyx = Z zvx(x,- +h,)/j +k)2,
h=—W/[2k=-W/2
wi2 wi/2

w= 2 XVykithyj+k?
h=—W/2k=—W /2

G

where V, and V,, are the x and y gradient components computed through
3 x 3 Sobel masks. In fact, it can be shown that this method is mathemati-
cally equivalent to the principal component analysis of the autocorrelation
matrix of the gradient vectors [23]. Usually, the orientation image is further
smoothed (low-pass filtered) to eliminate any false local estimates of fin-
gerprint ridge orientations. Figure 2.7(a) shows the estimated orientation
field of the fingerprint image shown in Figure 2.3(b).
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The local ridge frequency (or density) fy, at point [x, y] is the inverse of
the number of ridges per unit length along a hypothetical segment centered
at [x, y] and orthogonal to the local ridge orientation 6,,. A frequency
image F, analogous to the orientation image D, can be deﬁvned if the fre-
quency is estimated at discrete positions and arranged into a matrix [21].
Thelocal ridge frequency varies across different fingers, and may also vary
noticeably across different regions in the same fingerprint. The ridge pat-
tern can be locally modeled as a sinusoidal-shaped surface, and the varia-
tion theorem can be exploited to estimate the unknown frequency [24]. The
variation V of a function h in the interval [x;, x,] is the amount of “vertical”
change in h:

x2
v = | dzgcx) dx 2.7)
x]

If the function h is periodic at [x}, x,] or the amplitude changes within
the interval [xy, x,] are small, the variation may be expressed as a function
of the average amplitude a,, and the average frequency f (see Figure 2.6):

V(h)=(x3 —x1)- 2y, - f (2.8)
Therefore the unknown frequency can be estimated as:

v 09)

2-(x3 =x1) sy

In a practical method based on the above theory, the variation and the
average amplitude of a two-dimensional ridge pattern can be estimated
from the first- and second-order partial derivatives and the local ridge fre-
quency can be computed from Equation (2.9).

Once thelocal orientation image, D, and the local ridge frequency image,
F,have been estimated, the fingerprint image (shown in Figure 2.2(b)) can

A
Al -

);1 X2
Figure2.6 Thevariation of the function hintheinterval [x1,x;]isthe sum of amplitudesaq,a, ...
ag [24].1f the function is periodic or the function amplitude does not change significantly within
the interval of interest, the average amplitude «, can be used to approximate the individual .

Then the variation may be expressed as 2a, multiplied by the number of periods of the function
over the interval [21].
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Figure 2.7 The orientation field is superimposed on the fingerprintimage in (a).In (b), the result
of the Gabor filters-based contextual filtering of the fingerprint image in Figure 2.3(a) is shown.

be contextually filtered using the Gabor filters as in Equations (2.4) and
(2.5), resulting in an enhanced image (shown in Figure 2.7(b)).

An enhancement algorithm built upon a model of fingerprint structure can
be useful for the enhancement of fingerprints, but it is also important to
understand that there are some non-fingerprint properties of digitized finger-
print images that need to be dealt with. The first is that inked fingerprint
images may have variations in intensity due to the inking process. The ink may
be absent or less dense in some areas or over the entire print. The fingerprint
image may also have smudges (blobs) in some areas or over the entire print
due to excessive ink. Similarly, live-scan fingerprint images may not always
contain an impression of a real finger, but may contain a latent image of a pre-
vious impression (e.g. oils left on the surface of the scanner) or a three-dimen-
sional artificial replica of a fingerprint. Consequently, inked fingerprints may
need different enhancement schemes than live-scanned images. The enhance-
ment process must neither be so aggressive that any variation of gray-scale is
assumed to be caused by the finger ridge structure (e.g. at extremely low S/N
ratios) nor too weak to handle the imaging non-uniformity often found in
inked fingerprints. The goal is always to produce an enhanced image that does
not contain artificially generated ridge structure that might later generate
false minutiae features, while capturing the maximum available ridge struc-
ture to allow detection of true minutiae. Adapting the enhancement process to
the fingerprint capture method will yield the optimal matching performance
over a large collection of fingerprints.

A fingerprint may contain such poor quality areas that the local ridge
orientation and frequency estimates are completely wrong. An algorithm
that can reliably locate (and mask) these extremely poor quality areas is
very useful for the feature detection and recognition stages by preventing
false or unreliable features from being created [20].

2.5.3 Feature Extraction

Enhancement generally results in an image that is ready to be converted to
a binary value at each pixel. For inked or optically live-scanned prints, the
ridge width will likely be several black pixels and the valleys several white
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(b)

Figure 2.8 (a) shows the result of binarization (through the ridge location algorithm of [25]) of
the enhanced fingerprintimage in Figure 2.7(b). (b) shows the results of thinning the image in (a)
to a single pixel width.

pixels. Some solid state live-scan devices reverse the “polarity” of the
image, yielding white ridges and black valleys.

In feature extractors found in the early systems, different types of minu-
tiae features (e.g. ridge ending, bifurcation, and additional types such as
island and dot) were often characterized by the use of models. This
required an assignment of all possible minutiae features to a model or
models, and required subsequent manual editing to resolve the multiple
possibilities for a single minutia feature. Feature extraction that depends
upon models of all possible configurations for minutiae must necessarily
be a compromise, since as the number of fingerprints becomes large, the
possible minutiae shapes and details become ever more complex. The com-
promises result in many true minutiae missed and false minutiae detected.
Instead of working directly with the enhanced image, a better approach
may be to deal with the fingerprint image after ridges have been symmetri-
cally thinned about the ridge centerline.

The enhanced image shown in Figure 2.7(b) is first binarized (i.e. setting
ridge pixels to 1 and valley pixels to 0; see Figure 2.8(a)) and then uniformly
thinned to a single pixel width about the ridge centerline (see Figure
2.8(b)). Binarization can either be achieved simply by thresholding the
image in Figure 7b or by using more sophisticated ridge location algo-
rithms [25]. The central idea of the thinning process is to perform succes-
sive (iterative) erosions of the outer-most layers of a shape until a
connected unit-width set of lines (or skeletons) is obtained. No mathemat-
ical definitions exist for the thinning process, leading to a wide range of
approaches proposed in the literature. The skeletal image shown in Figure
2.8(b) was created using a method defined by Rosenfeld [26]. Rosenfeld’s
method examines a 3 x 3 pixel neighborhood to decide whether the center
pixel (P1) should be black (indicating a ridge) or white (indicating a
valley). Figure 2.9 illustrates the four conditions under which P1 would be
considered as sitting on a ridge. The shading in Figure 2.9 indicates the
location of black pixels in the image.

Neighborhoods for ridge end points are also defined (see Figure 2.10).
There are also definitions for isolated points where none of the neighbors
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Figure 2.9 Center pixel (P1) is determined to be on a ridge during thinning.
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Figure 2.10 Center pixel (P1) is determined to be at the end of a ridge during thinning.
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Figure 2.11 Center pixel (P1) is determined to be a ridge bifurcation minutia during minutiae
detection.

of Pl isblack.The 3 x 3 analysis kernels are applied to a binary image along
rows and by columns (in a raster-scan fashion), and a decision is made
whether to change the center pixel (P1) from black to white for simply con-
nected, not isolated nor end point, P1s. By systematically applying these
region definitions to a binary image to decide whether a pixel should be
white or black, a thinned, single-pixel-width ridge structure is created. The
order of application needs to be consistent, alternating from top to bottom
to left to right to produce a thinned image centered on the original image.
Usually some editing is required to remove short “whiskers” generated by
the thinning process on certain two-dimensional structures. Additionally
there is often a need to introduce some filling definitions to handle the
existence of pores in fingerprint images. Pores are background white pixels
surrounded by black ridge pixels in a binary image. When eroded by thin-
ning, these pores can produce enclosed white regions of significant size
such that they may be (falsely) detected as minutiae. Elimination of as
many of these pore regions as possible before minutiae detection makes it
easier to edit the final minutiae set.

Once the skeletal image is created,a minutiae detection stage can analyze
this image using another set of 3 X 3 kernels to identify ridge ending or
bifurcations points as minutiae. A ridge-ending minutia is indicated if only
one pixel element, P2-P9, is black. A bifurcation minutia has three neigh-
boring black pixels, as illustrated in Figure 2.11.

Although the process is simple in principle, false structures, resulting
from imperfect restoration of ridge detail, pores or other anomalies created
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Figure 2.12 The detected minutiae features are superimposed on the original inked fingerprint
of Figure 2.3(a) for display.

by aggressive enhancement, must be detected and eliminated. This may be
accomplished as part of the initial validation of the detected minutia or in
post processing [21]. Initial validation considers, for example, whether the
ridge length running away from the minutia point is sufficient, or if the
ridge direction at the point is within acceptable limits. Post processing
might include an examination of the local image quality, neighboring
detections or other indicators of non-fingerprint structure in the area. Fur-
ther, the image can be inverted in gray-scale, converting white to black and
black to white. Reprocessing of this inverted image should yield minutiae
endings in place of bifurcations and vice versa, allowing a validity check on
the previously detected minutiae. The final detected minutiae are those
that meet all of the validity checks. Figure 2.12 shows the minutiae detected
on the fingerprint image shown in Figure 2.3(a) by using the techniques
described in this section.

Certain minutiae extraction algorithms work differently and detect the
minutiae directly in the gray-scale fingerprint image [21, 27]. Once a vali-
dated set of minutiae is determined, additional feature data such as minu-
tiae confidence, ridge counts between minutiae, ridge count confidence,
core and delta locations, etc. can be determined. These additional features
may be useful to achieve added selectivity from a minutiae matching pro-
cess. Their usefulness for this purpose may be mediated by the confidence
associated with each such feature. Therefore it is important to collect confi-
dence data as a part of the image enhancement and feature extraction pro-
cess to be able to properly qualify detected minutiae and associated
features.

2.5.4 Classification

In some system implementations, fingerprint pattern classification (such
as loop, arch, whorl) is done automatically, and is used as a selector for
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candidate records in a search. Submitted samples need only be compared to
database records with the same classification. Such automatic classifica-
tion of fingerprint patterns is not perfect (the state-of-the-art classifica-
tion algorithms have an accuracy of about 99% [28]), and sometimes
requires manual confirmation. Errors occur when truly matching prints
are given different classifications. Such errors increase the system’s false
non-match rate.

Fingerprint pattern classification can be determined in several ways:
explicitly characterizing regions of a fingerprint as belonging to a partic-
ular shape; or through implementation of one of many possible generalized
classifiers (e.g. artificial neural networks) trained to recognize the speci-
fied patterns. The singular shapes (e.g. cores and deltas) in a fingerprint
image are typically detected using the Poincaré method [29, 30] on the fin-
gerprint orientation image, D, as follows.

Let G be the vector field associated with a fingerprint orientation image
D (note that a fingerprint orientation image is not a true vector field since
its elements are unoriented directions, but it can be converted to a pseudo-
vector field by multiplying the orientation values by 2 [31]) and let [4, j] be
the position of the element 6;; in the orientation image; then the Poincaré
index Pg, ¢(i, ) at [i,]] is computed as follows:

® the curve Cis a closed path defined as an ordered sequence of some ele-
ments of D, such that [4, j] is an internal point

® Pg (i, j) is computed by algebraically summing the orientation differ-
ences between adjacent elements of C. Summing orientation differences
requires a direction (among the two possible) to be associated at each
orientation. A solution to this problem is to randomly select the direc-
tion of the first element and assign the direction closest to that of the pre-
vious element to each successive element. It is well known and can be
easily shown that, on closed curves, the Poincaré index assumes only one
of the discrete values: 0°, £180° and #360°. In the case of fingerprint
singularities:

[ 0° if[i, jldoes not belong to any singular region

360° if [7, j] belongs to a whorktype singular region

P, ‘) )= el - : 1 2.10
6chN=1 g00 if [i, /] belongs to a loop-type singular region (2:10)

—180° if[i, j]belongs to a delta-type singular region

Figure 2.13 shows three portions of orientation images. The path defining
C is the ordered sequence of the 8 elements dy (k = 0..7) surrounding [i, j].
The direction of the elements dy is chosen as follows: d, is directed upward;
dj (k=1..7) is directed so that the absolute value of the angle between dy and
dj_q is less than or equal to 90°. The Poincaré index is then computed as:

Poclij)= D angle(d i, d (k+1)mods) (2.11)
k=0..7
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Figure 2.13 Example of computation of the Poincaré index in the 8-neighborhood of points
belonging (from the left to the right) to a whorl,loop and delta singularity, respectively. Note that
for the loop and delta examples (center and right), the direction of dy is first chosen upward (to
compute the angle between dy and d1) and then successively downward (when computing the
angle between d; and dg) [21].

The explicit (rule-based) fingerprint classification systems first detect
the fingerprint singularities using the above method and then apply a set of
rules (e.g.arches have no loops and deltas, tented arches and loops have one
core and one delta, and whorls have two loops and two deltas etc.) to deter-
mine the pattern type of the fingerprint image. The most successful gener-
alized (e.g. artificial neural network-based) fingerprint classification
systems utilize a combination of a number of different classifiers [21].

The effort to validate patterns during fingerprint image capture, and
automate their entry into the system, is substantially less than the proce-
dures required for manual systems. The use of fingerprint pattern informa-
tion can be an effective means to limit the volume of data sent to the
matching engine resulting in benefits in both the system response time and
the false-match error rate.

2.5.5 Matching

Automatic fingerprint matching has been in operational use in criminal
AFIS applications since the late 1970s. Running routine searches to identify
criminals associated with a particular crime scene without known suspects
is now possible with the help of AFIS. In many ways, automatic fingerprint
matching only accomplishes what a fingerprint technician would do, but
accomplishes it much faster and more effectively. Prior to the development
of AFIS technology, many police agencies did not routinely search crime
scene fingerprints because of the labor required. Only the most serious
crimes were subjected to a search for candidates from the criminal finger-
print file. With automatic matching, it is possible to search for records
without a suspect in mind, and to do this with far less labor in a matter of
minutes rather than days or weeks.

Automatically matching fingerprint minutiae sets is a difficult pattern
recognition problem, mainly due to the large variability in different
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impressions of the same finger (i.e.large intra-class variations). The main
factors responsible for the intra-class variations are as follows (note that
“sensor” is used as a collective term for ink, live-scan and latent imaging):

® Displacement: the same finger may be placed at different locations on the
sensor during different acquisitions, resulting in a (global) translation of
the fingerprint area.

® Rotation: the same finger may be rotated at different angles with respect
to the sensor surface during different acquisitions.

® Partial overlap: finger displacement and rotation often cause part of the
search fingerprint area to fall outside the file fingerprint’s “field of view”,
resulting in a smaller overlap between the foreground areas of the search
and the file fingerprints. This problem is particularly serious in latent
fingerprints.

® Nonlinear distortion: the act of sensing maps the three-dimensional
shape of a finger onto a two-dimensional surface. This mapping results
in a nonlinear distortion in successive acquisitions of the same finger
due to skin plasticity.

® Pressure and skin condition: the ridge structure of a finger would be
accurately captured if ridges of the part of the finger being imaged were
in uniform contact with the sensor surface. However, the finger pressure,
dryness of the skin, skin disease, sweat, dirt, grease and humidity in the
air all confound the situation, resulting in a non-uniform contact. As a
consequence, the acquired fingerprint images are very noisy and the
noise varies strongly in successive acquisitions of the same finger,
depending on the magnitude of the above-cited causes.

® Noise: this is mainly introduced by the fingerprint sensing system; for
example, excessive or too little ink causes noise in inked fingerprints,
residues are left over on the glass platen from the previous fingerprint
capture; and latents may be lifted from rough surfaces.

® Feature extraction errors: the feature extraction algorithms are imper-
fect and often introduce measurement errors. Errors may be made
during any of the feature extraction stages (e.g. segmentation of the fin-
gerprint area from the background; estimation of orientation and fre-
quency images; detection of the number, type and position of the
singularities; detection of minutiae; and post processing). Aggressive
enhancement algorithms may introduce inconsistent biases that perturb
the location and the orientation of the reported minutiae from their
gray-scale counterparts. In low-quality fingerprint images, the minutiae
extraction process may introduce a large number of spurious minutiae
and may not be able to detect all the true minutiae.

Mathematically, the fingerprint minutiae matching problem can be
described as follows [21]. Let T and I be the representation of the file and
search fingerprint, respectively. Each fingerprint minutia may be described
by a number of attributes, including its location in the fingerprint image,
orientation, type (e.g.ridge ending or ridge bifurcation), a weight based on
the quality of the fingerprint image in the neighborhood of the minutia,
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etc. Most common minutiae matching algorithms consider each minutia as
a triplet m = {x, y, 6} which indicates the x, y minutia location coordinates
and the minutia angle 6:

T={m1am27'-'7mm}) m; ={xi))/i)9i}, i=l.m (212)
I={m{,m5,...,m,}, m} ={x{,y{,0{}, j=l.n (2.13)

where m and n denote the number of minutiae in T and I, respectively. A
minutiam inIand a minutia m; in T are considered “mating” if the spatial
distance between them is smaller than a given tolerance dj.

|x}- -x; |<dy and |y; -y;i|<dg (2.14)

and the direction difference between them is smaller than an angular toler-
ance 6:

min(|0 -6 |, 360~|65 -6, |) <8, (2.15)

Equation (2.14) takes the minimum of |6 —6;|and 360°—|0 —6;|because
of the circularity of angles (the difference between angles of 2° and 358° is
only 4°). The “tolerance boxes” defined by dy and 6 are necessary to com-
pensate for the unavoidable errors made by the feature extraction algo-
rithm and to account for the small plastic distortions that cause the
minutiae positions to change (see Figure 2.14).

Aligning the two fingerprints is a mandatory step in order to maximize
the number of matching minutiae. Correctly aligning two fingerprints cer-
tainly requires displacement (in x and y) and rotation (0) to be recovered
and likely involves other geometrical transformations, such as scale and
nonlinear distortion.

Let map(.) be the function which maps a minutia m’ (from I) into m}’
according to a given geometrical transformation; for example by considering
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Figure 2.14 Examples of mating, non-mating and multiple mating minutiae.
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a displacement of [Ax, Ay] and a counterclockwise rotation 6 around the
origin (the origin is usually selected as the minutiae centroid, i.e. the average
point; before the matching step, minutiae coordinates are adjusted by sub-
tracting the centroid coordinates):

”

mapax,ay,o(mi ={x},y5,05) =m7 ={x7,y7,0’ +06}

x7] [cosf —sin@][x;] [Ax (2.16)
where | o, |=| . o+

Vi sinf  cosf | yj Ay

Let mm(.) be an indicator function which returns 1 in case the minutiae

mj and m; match according to expressions (2.14) and (2.15):

., 1 if expressions 14 and 15 are true
mm(m]-,mi)z . (2.17)
0 otherwise
Then the matching problem can be formulated as:
m
maximizeme(mapr’Ay’g(m P(i))>m;) (2.18)

Ax,Ay,0,P i1

where P(i) is an unknown function which determines the “correspon-
dence” or “pairing” between I and T minutiae.

The maximization in Equation (2.18) can be easily solved if the function P
(minutiae correspondence ) is known; in this case, the unknown alignment
(Ax,Ay,0) can be determined in the least square sense. Unfortunately, in prac-
tice neither the alignment parameters nor the correspondence function, P, are
known, and therefore solving the matching problem is very hard. A brute force
approach, i.e. evaluating all the possible solutions (correspondences and
alignments), is prohibitive since the number of possible solutions is exponen-
tial in the number of minutiae (the function P is more than a permutation due
to the possible null values). In pattern recognition literature, the minutiae
matching problem has been generally addressed as a point pattern matching
problem, and a family of approaches known as relaxation methods, algebraic
and operational research solutions, tree-pruning approaches, energy-
minimization methods, Hough transforms etc. are available.

Fingerprint matching can be best visualized by taking a paper copy of a
file fingerprint image with its minutiae marked and a transparency of a
search fingerprint with its minutiae marked. By placing the transparency
of the search print over the paper copy of the file fingerprint and trans-
lating and rotating the transparency, one can locate the common minutiae
that exist in both prints. From the number of common minutiae found and
their closeness of fit, it is possible to assess the similarity of the two prints.
Figure 2.15 shows an example of a comparison of a fingerprint pair.

Of course, to make these minutiae comparisons manually would be
prohibitive in terms of time and would therefore seriously limit the
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Figure 2.15 An example of matching the search minutiae set in (a) with the file minutiae set in
(b) is shown in (c).

effectiveness of the procedure. With automatic matching, the comparisons
can be done tens of thousands of times each second, and the results can be
sorted according to their degree of similarity and combined with any other
criteria that may be available to further restrict the candidates, all without
human intervention.

Ultimately, the difficulty in carrying out an identification lies in the
volume of fingerprint data that needs to be matched and the quality of the
fingerprints from which that data is extracted. In many thousands or mil-
lions of fingerprints, there is always a broad range of quality present, due to
varying skin conditions or the techniques used to capture the prints, or a
combination of both. The extracted data from a print to be searched may be
excellent, but the data for its mate on file may either be of poor quality or
improperly taken (e.g. only partial capture). There may also be other poor-
quality data not related to the fingerprint in question, but whose presence
may produce false comparison results to mask the true match. If more than
one finger is available to match, it is often possible to overcome the most
pathological set of circumstances that would otherwise make finding the
matching person impossible.Itis an important policy to allow for sufficient
fingerprint data (multiple fingers from the same individual) to be collected
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and stored for use when the file of fingerprints reaches its maximum size.
In this way it will always be possible to achieve a specified level of accuracy
almost independent of the volume of data on file.

2.5.6 Searching

Searches in a criminal AFIS are conducted with the same objective as in
manual criminal systems, but are preferred because of their fast speed.
AFIS can rapidly access records, filter the fingerprint database on a variety
of data elements (such as gender or age, if known), and match the filtered
candidates at a very high speed. Fingerprint pattern classifications can be
specified in terms of primary and secondary pattern types and tolerances
can be applied to account for expected coding error in the candidate selec-
tion process. A large number of possible candidates can be rapidly com-
pared and ranked by their likelihood of being a mate and presented to a
trained fingerprint technician. Such possibilities do not exist in manual
systems, not only because of the labor involved in comparing a large
number of records, but also because manual methods generally do not
allow efficient access to the records based on the ranges of filter
parameters.

Fingerprint databases in AFIS are often very large, consisting of hun-
dreds of thousands or millions of records. The database holds not only the
feature (minutiae) data for each finger but also the gray-scale fingerprint
images that may be required for manual inspection and printing. The data-
base may additionally hold the thinned ridge images that may be used for
added matching selectivity and reliability in certain unattended modes of
operation. Unattended “lights-out” applications require automatic deci-
sions to be made without the immediate possibility of human intervention.
Such cases arise in criminal identification operations that are not staffed
around the clock. If an arrest is made during non-office hours, a decision
needs to be made whether to hold (based on outstanding charges) or
release the individual in custody based on fully automatic matching of his/
her fingerprints. In a “lights-out” application, since the matching system
needs to make an unattended decision, more detailed comparisons are nec-
essary to provide the required level of decisional confidence. Eventually,
the automatic matching results would be confirmed by a fingerprint techni-
cian, but the automated decision process must be reliable enough to ensure
that initial errors are very rare.

The search process also needs to cope with a continual growth in the
database size as new arrest information is added. The processing of
searches must scale effectively as the number of records grows, since the
response time for searches is directly proportional to the volume of data
and computational resources. To achieve this scalability, the search is usu-
ally divided among a number of computers on a network that can access the
same database. At the same time, efficient methods are required to main-
tain the system database as additions, updates and deletions are concur-
rently made on various computers. A reasonable way to satisfy both these
needs is to provide a bi-level database architecture: the first level maintains
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the complete database with a general-purpose database management
system (DBMS), and the second level maintains discrete data partitions
resident on the matching engines. The first level provides general-purpose
data access, statistics, and reporting, while the second level provides rapid
access to data required by minutiae matching and filtering.

2.5.7 Manual Verification

In every large-scale identification application, whether criminal or civil, a
fingerprint technician manually confirms the identification made by the
AFIS. The AFIS accomplishes this by assembling a collection of the possible
candidates, ordered by the search and matching process, and delivering
these candidate images to a display station for review by the technician. In
some cases, all the identifications are submitted to a second level of review
by a supervisor to confirm the decisions made by a more junior technician.
Typically, the verification workstation provides side-by-side display of the
search fingerprint(s) sequentially with each of the file candidates ordered
by the matching process. The individual images are presented at a size and
resolution that allows the technician to examine details of the fingerprints
so as to make a decision whether the fingerprints match. Images are dis-
played at 8 bit gray-scale (256 levels) and magnified to at least five times
their normal size. It is a common practice to use large, high-resolution (e.g.
1,280 x 1,024 pixel) computer monitors to allow simultaneous display of
the images being reviewed and a set of controls to manage the process of
sequencing through the series of images.

2.6 Criminal Applications

Criminal identification systems that use manual techniques to file and
search records in a fingerprint collection have been in productive use for
over a century. Different systems operated at the national level, at the met-
ropolitan level, and in very local populations (e.g. prisons and jails). There
was seldom any interaction between these systems, not only because of
geographic or operational separation, but also because there were often
significant differences in the cataloging and search procedures of different
systems that made the interaction difficult. Even the introduction of AFIS
into law enforcement did not immediately stimulate interest in providing
interoperability among such systems.

2.6.1 National Systems

Apart from the system installed by the national police of Japan in the mid-
1970s, there was no rush internationally to install AFIS at national levels.
This was probably the result of two important factors: first, the databases of
inked tenprint files were large and the effort required to digitize them was
high; and secondly, the technical risks of implementing the complex
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workflow, the personnel task automation and the training procedures were
high. There was, however, a great deal of effort expended by national orga-
nizations (e.g. the FBI in the USA and the Home Office in the UK) to
research the technology and implement pilot systems. In fact, it is likely
that the commercialization of AFIS and the deployment of state and local
systems would not have progressed at the pace it did were it not for the
investment made by these national agencies.

In the USA, the FBI implemented several pilot systems that operated on
portions of the daily workload or criminal fingerprint database. The initial
implementation that started in the mid-1970s provided a means to test
research results in a small but operational environment. In this way,
research into image processing, automated pattern type classification,
automated search strategies and minutiae matching could be evaluated and
tuned to optimize performance metrics. During the 1970s, the FBI con-
tracted with a number of organizations as well as developed their own
research organization to manage the numerous projects that lead the way
to the Integrated Automated Fingerprint Identification System (IAFIS) in
place today. Among the incremental steps to IAFIS, in the mid-1980s the
FBIlimplemented a comprehensive automation of the workflow of the iden-
tification section, including specialized workstations to automate many of
the complex human tasks involved in processing a search. This automation
also included the complex media routing dictated by the workflow to mini-
mize one of the most serious problems in any large data processing system
- the lengthy delays associated with holding paper records in manual in-
baskets.

The transition to a large-scale imaging application environment pro-
vided enormous challenges for everyone at that time, but it was especially
challenging for the FBI to implement a system to manage up to 35,000
image-based transactions per day. Massive amounts of storage were
required to hold the transient search image data as well as the active file
image data. Imaging standards were needed for fingerprint scanning, com-
pression [44] and display to ensure that suitable data would be captured
and stored. Since an overwhelming amount of FBI work is submitted from
state and local agencies, the standardization needed to include these agen-
cies as well. At the same time as the FBI was laying the plans for IAFIS, live-
scan fingerprint capture devices were beginning to be deployed by many
state and local agencies to eliminate the inked fingerprint collection pro-
cess and the scanning of inked tenprint cards. It was necessary for the FBI
to extend imaging standards originally designed for scanned inked finger-
prints to include live-scan devices manufactured by several different ven-
dors. Although the FBI had no direct control over these live-scan vendors
or the agencies using live-scan equipment, they worked with both to the
benefit of the identification community at large. Ultimately, the FBI efforts
gained support from the international identification community and the
agencies involved cooperated through Interpol to develop standards
similar to those articulated by the FBI.

The IAFIS system currently in use at the identification division of the FBI
in Clarksburg, VA, has been designed, built and installed by the Lockheed
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Martin Corporation. This system handles in excess of 35,000 record sub-
missions daily and provides far more rapid response to identification
requests than was ever possible with the earlier manual systems. The
remaining challenge is to transition the agencies requesting identification
from submission of paper tenprint cards to submission of electronic fin-
gerprint images. This is a tremendous undertaking, given the wide geo-
graphic distribution of these agencies, the variation in operational
procedures, the non-interoperability of existing AFIS, and the secure elec-
tronic communications links that must be established between these agen-
cies and the FBI. A great deal of effort is under way to facilitate this
transition and provide the required technical, physical and hardware
support.

Outside the USA, several national AFIS were put in place in Europe and
the Middle East from 1984 onwards. In particular, systems were installed in
Switzerland, Norway and Holland. Thereafter, AFISs were installed in the
UK, Denmark, Sweden, Finland, Belgium, France, Germany, Spain, Por-
tugal, Austria, Hungary, the Czech Republic, Slovenia and Slovakia. Since
then, many other countries have already installed or are in the process of
installing AFIS.

2.6.2 Local Systems

In the USA, local agencies, primarily cities and counties, were among the
tirst adopters of AFIS. This was probably because many metropolises were
at the forefront of criminal investigations and viewed their needs as more
immediate than did the state agencies. By the late 1970s, these local agen-
cies saw an opportunity to dramatically improve their capability to search
latent prints lifted from the crime scenes through AFIS and committed to
implementing fingerprint automation within their identification bureaus.
For metropolises, latent print investigation was a local process rather than
a state process. State crime labs focused on supporting smaller jurisdic-
tions that did not have the trained staff necessary to handle all the details of
crime scene investigations. Local agencies implementing AFIS envisioned
dramatic improvements in their ability to catch criminals and to use their
trained staff more effectively.

Another factor that may have led the early AFIS implementations to be at
the local level was the generally smaller size of the fingerprint databases
held in these bureaus. The states maintained fingerprint databases that
were often several orders of magnitude larger than those of the localities
within the state, and conversion to AFIS represented a formidable under-
taking in both time and money. Regardless of the reasons, local agencies
led the way in AFIS adoption, and by the end of the 1970s there were at least
half a dozen cities in the USA with an AFIS in place. During this time, some
state agencies were also evaluating the use of AFIS for latent print
matching. However, this number remained rather small until the mid-
1980s, when many US cities and some European agencies began AFIS pro-
curement activities following the success of the AFIS reported by the early
adopters.
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In the mid-1980s, the AFIS implementations began to store the full fin-
gerprint images in the computerized databases in addition to the minutiae
data. This made it possible to manually review the candidate matches on a
display screen, which was significantly faster and less laborious than the
inked card processes.

2.6.3 Interoperability

As more states implemented AFIS, the problem of interoperation among
thelocal agencies gained importance. Further, it was common for the states
to receive fingerprints from the local agencies to be searched against the
state criminal database before submission to the FBI. This provided some
filtering of identification requests to the FBI. Therefore it became desirable
to have standardized protocols for electronic submissions of fingerprint
matching requests from the local agency to the state and, finally, to the
national AFIS.

The efforts put into AFIS interoperability by NIST under the FBI spon-
sorship resulted in an ANSI/NIST standard for data interchange. This stan-
dard was initially crafted in mid-1980,is updated every 5 years, and defines
data formats for images, features and text [19]. Since different AFIS ven-
dors have different implementations and definitions of minutiae feature
details, and since record data elements vary between agencies, the ANSI/
NIST standard provides a common basis for interoperability by encapsu-
lating data in defined formats.

To handle the differences in record data elements, the standard requires
that the sending agency use the element definitions of the receiving
agency. In practice, most agencies provide their definitions for other
agencies to use. However, it is difficult to get the vendors involved in the
standards process and to actively provide support for the formats
required to exchange data. It can be a lengthy process to get all the defini-
tions created, agreed upon, and then implemented, so that the data can
actually be exchanged. The FBI has provided not only the forum and
impetus for the creation of the interchange standard, but has also assisted
their users in both technical and material ways to facilitate data exchange.
However, with so many separate agencies, each with its own resources and
schedules, meeting specific implementation dates has been a challenging
task for all involved.

Outside North America, under the auspices of the Interpol AFIS Expert
Working Group (IAEG), there is a similar effort toward interchange stan-
dardization following the basic format of the ANSI/NIST standard. There
are at least 11 countries (Brazil, Canada, France, Germany, Japan, Mexico,
Norway, South Africa, Spain, UK and USA),and an observer from Europol
that participate in this international effort. IAEG has defined their cur-
rent standard as INT-I Version 4 [32] and is committed to periodic
updates.IAEG clearly demonstrates the level of international cooperation
necessary in an era when criminal activity is not contained by national
boundaries.
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2.6.4 “Daubert” Questions

Much has been written about the theoretical infallibility of fingerprints in
criminal identification. However, unlike DNA matching research that
emerged from a laboratory environment with a quantitative foundation
and a robust estimate of the likelihood of occurrence of the same (or sim-
ilar) protein strings in nature [33], fingerprint matching has not had such
rigorous quantitative development. Fingerprint collection and examina-
tion began in the field rather than in the laboratory. There is now well over
100 years of accumulated and established knowledge, observation and
experimental investigation coupled with theoretical explanation of the
origin and development of fingerprints and their individuality. These qual-
ifications, as a science, have been successfully used to demonstrate the
validity of fingerprints for a wide range of identification functions. Finally,
theoretical quantifications of the amount of discriminatory information
present in the fingerprints have now been provided [34].

Nevertheless, recently, there have been a number of “Daubert”challenges
in courts of law to the validity of latent fingerprint identification in partic-
ular and to the scientific foundations of fingerprint analysis and compar-
ison in general.

The US Supreme Court’s “Daubert” decision originated in the 1993 civil
case of Daubert vs. Merrill Dow Pharmaceuticals and generated an opinion
regarding the admissibility of scientific evidence in Federal court [35].
Many state and local courts have also adopted this ruling. The opinion ren-
dered was that a trial judge must screen scientific evidence to ensure that it
is relevant and reliable, and the focus must be on principles and methods,
not just on the conclusions. Courts must consider testing, validation, peer
review of the processes, error rates and “general acceptance” of the
practice.

The application of the “Daubert criteria” to fingerprint identification in
criminal cases began in 1999 with the case of US vs. Byron C. Mitchell [36].
The admissibility of fingerprint evidence was challenged on the premises
that, although fingerprints have been used for over 100 years, there is no
scientific foundation for reliability (e.g. uniqueness and permanence), for
estimating error rates, or for the uniformity and level of training of latent
fingerprint examiners.

In defense of the general forensic admissibility of fingerprint evidence in
the Mitchell case, the US Department of Justice expended great efforts to
collect information on: fingerprint uniqueness and permanence based on
the formation of friction ridges during embryonic development; the
forensic techniques of fingerprint identification and the peer review pro-
cess; the statistics related to the errors in identification; and the training
programs in place for latent fingerprint collection, examination and com-
parison. The ruling in this landmark case concluded that (1) “...human fric-
tion ridges are unique and permanent throughout the area of friction
ridge skin, including small friction ridge areas...” and (2) “..friction ridge
skin arrangements are unique and permanent...” [36]. Notwithstanding
this ruling, there have been at least 36 more Daubert challenges to the
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admissibility of fingerprint evidence in criminal (and one civil)
proceedings till date.

The significance of these challenges to fingerprint identification is that
they have forced the law enforcement community in general, and the latent
fingerprint examiners in particular, to consider the processes and proce-
dures more carefully and understand the scientific foundation for the many
techniques and rules previously taken for granted. Latent examiners are
now more aware of the details of the techniques used to conclude thata par-
tial latent print from a crime scene actually matches a rolled, inked finger-
print taken perhaps many years earlier. The fact that these challenges
continue to be filed is convincing evidence that fingerprint identification
community must continue to explore and understand the firm scientific
foundation on which it stands [37, 45]. There must also be a continuing
effort in the teaching of the science (well documented in the Daubert hear-
ings) to ensure that all technicians in the field understand and apply these
well-developed techniques in their daily work. It is also important to con-
tinue a high level of peer review to ensure that there is consistency and
quality necessary to maintain confidence in the error rates established in
application.

2.7 Civil Applications

As criminal AFISs have matured, it has become apparent that there are
many opportunities in the civil sector where fingerprints might be useful to
verify a person’s identity or identify a person who may try to obtain an
identity fraudulently. In some instances it may be desirable to determine
whether an applicant for a civil document or a sensitive employment posi-
tion has a criminal record by matching the applicant’s fingerprints against
a criminal AFIS.

Although, there is relatively little desire within North America for a gen-
eral civil identification document, it is a common practice in many parts of
the world to require submission of applicant’s fingerprints when applying
for an identity card or registering to vote. With strictly manual fingerprint
searches and comparison, these systems become intractable as the number
of records grows, and a civil AFIS can supply a more reliable and practical
solution.

Civil AFIS differ from criminal AFIS in several ways. Civil AFIS have no
capability for the input of latent prints, the database contains only dab live-
scanned fingerprints of limited finger surface area instead of the “nail-to-
nail” rolled fingerprints of criminal AFIS, and there is no capability for
interoperability with FBI or other national criminal systems.

2.7.1 Welfare Fraud Reduction

In the USA, there is a growing interest to control the abuse of Benefits
Transfer Systems (BTS) by fraudulent application for multiple benefits
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through multiple registrations. Such fraud has been documented in BTS
that do not use any form of identification.

In the early 1990s, a system was put into place in Los Angeles County
(AFIRM) to register the two index fingerprints of all applicants for benefits
transfer, and to create a database that could be searched to detect and pre-
vent duplicate enrollments. The system also allowed identity verification of
persons already in the system and demonstrated very significant savings
[38]. With the implementation of the State Fingerprint Imaging System
(SFIS) within California (using the AFIRM database as the starting point),
these functions became statewide.

SFIS incorporates many more counties into a comprehensive network of
fingerprintimaging, data entry,and processing with the goal of controlling
the level of fraud within the state Health and Human Services network.
Currently, several states implement fingerprint systems similar to SFIS to
maintain control over fraud [39]. It seems clear that this introduction of
fingerprint identification/verification technology into BTS will expand
since it has been proven effective in reducing costs due to fraud in the ben-
efit application process. As the number of these applications grows, they
will demonstrate how AFIS technology may be applied to other types of
benefit delivery systems.

2.7.2 Border Control

Another important application of fingerprint technology was introduced
as a part of the Operation Gatekeeper program of the Border Patrol, a divi-
sion of the US Immigration and Naturalization Service (INS). This pro-
gram, named IDENT, was initiated in the mid-1990s in the area around San
Diego, California, and its purpose is to identify individuals making
repeated illegal border crossings. Records maintained in the fingerprint
identification system provide support for legal action against the most
severe recidivists (e.g. those with 15 or 20 recorded attempts).

Since fingerprint identification was only one of many aspects of Opera-
tion Gatekeeper, its effectiveness alone has been difficult to assess. How-
ever, it is clear that Operation Gatekeeper, in its entirety, had the effect of
shifting apprehensions of illegal border crossers from the San Diego area
eastward. It also established credibility for the use of fingerprint identifica-
tion at the borders in other countries. Many countries, including Australia,
Singapore, Hong Kong, Malaysia, Netherlands, Germany and the UK, are
developing biometric systems to aid the identification of persons seeking
admission to the country. In addition to fingerprints, hand geometry, iris
and facial recognition are also being used. It is clear that the verification of
a person’s identity will become an important part of international travel.

2.7.3 Driver registration

There is a long history of use of fingerprints with driver licenses dating
back at least 50 years. In California, the fingerprinting requirement was
eliminated for many years but then reintroduced in the 1980s when it



56 Biometric Systems

became possible to electronically capture fingerprint images. While the use
of fingerprints in the driver registration process has great potential in
fraud protection, there are serious privacy concerns over the possibility of
“function creep”, i.e. the potential for the system to be used for purposes
other than driver identification. Immediately after September 11th 2001, at
the mere suggestion of the potential for use of the driver license database to
identify terrorists, there was an immediate response by groups such as the
American Civil Liberties Union (ACLU) [40], the Electronic Privacy Infor-
mation Center (EPIC) [40], and the National Research Council [42],
pointing out the potential problems with any attempt to standardize the
state driver license systems into a national ID card. However, it seems clear
that there are many legitimate ways in which the driver license program
can collect and use fingerprints without privacy implications. For example,
fingerprints stored on the driver license could be used to verify the identity
of a person renewing a license (e.g. to combat identity theft). At the same
time, it also seems clear that there will be very earnest debate about any
widespread application of fingerprinting to driver licensing.

2.8 Commercial Applications

After over 30 years of development,implementation,and operational use of
AFIS for criminal identification, and more limited use in civil and high-
security access control applications, it seems that the use of fingerprint
matching in other civil and commercial applications is rapidly increasing.
The past 20 years have seen the introduction of a variety of personal com-
puter-friendly fingerprint scanners with ever decreasing price points,
making them more and more affordable for use in a wide variety of com-
mercial applications [43]. Fingerprint matching technology is now found
in shrink-wrapped software marketed by companies focused on the com-
mercial application of fingerprint technology. The question is no longer
whether fingerprint matching will become an integral part of secure com-
mercial applications, but when and in what volume.

2.8.1 Miniaturized Sensors

One of the important changes that have occurred within the last 5 to 10 years
has been the miniaturization and cost reduction of the live-scan fingerprint
sensors. Many vendors now manufacture optical sensors that are small and
low-cost. Further, a number of solid state fingerprint sensors have been
developed that are fabricated by processes quite similar to those used to
manufacture semiconductor devices. These solid state sensors take advan-
tage of sub-micron fabrication methods to provide fingerprint images of
high resolution. Initially, these solid state sensors were constrained by the
die size that could be fabricated with acceptable yield. The problem was not
the creation of a large enough sensor area, but rather the number of good,
flaw-free sensors that could be obtained from a semiconductor wafer. As die
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and wafer sizes have increased (e.g. 300 mm) to meet the demands for the
ever-expanding integrated circuits for computers and optical sensors for
cameras and video recorders, so has the size of solid state fingerprint sen-
sors. Additionally, the planar fabrication techniques allow additional func-
tions to be incorporated either on the same substrate, or easily integrated
into an interconnect substrate using semiconductor bonding techniques.
Similarly, the small live-scan optical sensors now use electronic imagers and
have memory on board to allow additional functionality to be implemented
in the sensor. The added functionality means that the entire finger sensor,
the associated electronics for processing the images, and the interface with
the personal computer can be incorporated into a small, rugged assembly. In
fact, most of these sensors now use the universal serial bus (USB) as the pre-
ferred means for connection. No more expensive frame grabbers and com-
plicated hardware installation; just plug and play for fingerprint capture and
matching.

2.8.2 Personal Access Protection

With the availability of affordable and small finger scanners and access
protection software, fingerprint verification can be easily incorporated
into most computers. Indeed, existing applications provide all the tools
necessary to verify the persons accessing a computer or computer network
from a central server. These sophisticated applications include, in many
cases, the active evaluation of the positioning of the finger (as low-cost sen-
sors may have an area as small as 0.5 X 0.5 in) to ensure that the finger
is placed in the correct position for a match to be successful. This level of
integration is a reflection of the increased awareness of the sensor manu-
factures to the operational issues that must be considered for
implementations to be successful.

Personal access protection can, and probably should, extend beyond the
initial logon to the computer or network. Most, if not all, computer users
connect to the Internet to obtain information, send and receive email,
transact business and make purchases. With all the concern over identity
theft, there is an urgent need to incorporate some form of validation of per-
sonal identity, particularly for credit card purchases over the Internet.
Although a number of biometrics could be used to verify the identity of a
person across a network, fingerprints are particularly appropriate for
remote transactions. With a fingerprint scanner attached to a personal
computer, a person can register fingerprint data with an Internet sales
organization or with a “third party” security service organization that
hosts the data. This data could be used to verify that the person completing
a transaction at a remote computer is the person authorized to use an
offered credit card. Personal fingerprint scanners are ultimately reaching
the $10 price point as manufacturing techniques are maturing and volume
of production is increasing. This makes fingerprints a very affordable
security technology for personal use.
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2.8.3 Banking Security

The banking industry has been evaluating the use of fingerprints for many
years for credit card commerce. Unlike the Internet environment, where a
sales organization intrinsically has a substantial computer capability in
place, most retail organizations have limited computer capability to sup-
port business transactions. Their computers (if they exist beyond the cash
register) are used for maintenance of inventory data. The cost of finger-
print sensors has not been low enough until recently to make fingerprint
identity verification a cost-effective part of their business operation. But
with the cost of fingerprint sensors dropping, and with the software to
enroll and compare fingerprints becoming reasonably robust, cost-effec-
tive commercial systems are increasingly being deployed for verifying cus-
tomers at the point of sale (POS) terminals. The key requirement is that
fingerprint data needs to be captured at the time of credit card issuance and
stored on the card (typically requiring about 300 bytes). The computer at
the point of sale is required only to verify that the print captured at the
checkout counter matches the data encoded on the credit card. This does
noteliminate the need, however, to verify that the credit card account is still
authorized and within its spending limit.

Another important aspect of the banking business is the ubiquitous
automatic teller machines (ATMs) and money access centers (MACs), now
estimated to exceed 300,000 in number. There has been considerable
evaluation of competing biometric technologies to verify the identity of
persons using these machines. The two most commonly mentioned
biometric technologies include fingerprint and iris scanning. Planar-
constructed fingerprint scanners, capable of integration into small
assemblies, seem ideally suited for incorporation into the mechanical
enclosures of the ATMs. These sensors can be affordably replaced if they
are damaged intentionally or through extended use (e.g. 3,000+ uses each
day). The simplicity of the available miniaturized live-scan fingerprint
scanner interface (USB connection), the robust capture techniques and
proven matching accuracy make fingerprint verification a serious
competitor for the ATM application.

2.8.4 Business-to-Business Transactions

With more and more businesses sharing information with manufacturers,
suppliers etc. via the computer and the Internet, and with the potential for
misuse of such information by unauthorized persons, there is an opportu-
nity for fingerprint-based verification systems to provide increased secu-
rity for business-to-business transactions. The fingerprints of persons
authorized to conduct business transactions or access business data can
either be registered at the web sites of the businesses involved or managed
by a security service providing a broad range of identity validation needs
for individuals. This function can be integrated with the verification of
individuals for credit card purchases so that data need not be replicated for
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each separate verification application. The key elements are the small, low-
cost fingerprint sensor and the personal computer, integrated to service
the wide range of business applications that benefit from validation of a
person’s identity across a network.
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Iris Recognition

Richard Wildes

3.1 Introduction

Biometrics bear the promise of providing widely applicable approaches to
personal verification and identification!. For such approaches to be widely
applicable, they must be highly reliable even while avoiding invasiveness in
evaluating a subject of interest. Reliability has to do with the ability of the
approach to support a signature that is unique to an individual and that can
be captured in an invariant fashion time and time again. Biometrics have
the potential for high reliability because they are based on the measure-
ment of an intrinsic physical property of an individual. For example, fin-
gerprints provide signatures that appear to be unique to an individual and
reasonably invariant with the passage of time, whereas faces, while fairly
unique in appearance can vary significantly with the vicissitudes of time
and place. Invasiveness has to do with the ability to capture the signature
while placing as few constraints as possible on the subject of evaluation. In
this regard, acquisition of a fingerprint signature is invasive as it requires
that the subject makes physical contact with a sensor, whereas images of a
subject’s face that are sufficient for recognition can be acquired at a
comfortable distance and, in certain scenarios, covertly.

Considerations of reliability and invasiveness suggest that the human
iris is a particularly interesting structure on which to base a biometric
approach for personal verification and identification. From the point of
view of reliability, the spatial patterns that are visually apparent in the
human iris are highly distinctive to an individual [1, 36]; see for example
Figure 3.1. Further, the appearance of any one iris suffers little from day-to-
day variation. From the point of view of invasiveness, the iris is an overt
body that can be imaged at a comfortable distance from a subject with the
use of extant machine vision technology [64]. Owing to these features of
reliability and (non)invasiveness, iris recognition is a promising approach
to biometric-based verification and identification of people. Indeed,

1 Throughout this discussion, the term “verification” will refer to recognition with
respect to a specified database entry. The term “identification” will refer to
recognition with respect to a larger set of alternative entries.

63
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Figure3.1 Thedistinctiveness of the humaniris. The left and right panels show images of the left
iris of two individuals. Even to casual inspection, the imaged patterns in the two irises are mark-
edly different. R. Wildes, Iris recognition: an emerging biometric technology. Proceedings of the
IEEE, 85(9),1348-1363,1997 (© 1997 IEEE)

significant strides have been made toward bringing iris recognition out of
the laboratory and into real-world deployment [56, 46].

Early use of the iris as the basis for a biometric-based approach to recog-
nizing persons can be traced to efforts to distinguish inmates in the Parisian
penal system by visually inspecting their irises, especially the patterning of
color [4]. More recently, the concept of automated iris recognition was pro-
posed [23]; however, it does not appear that this team ever developed and
tested a working system. Early work toward actually realizing a system for
automated iris recognition was carried out at Los Alamos National Labora-
tories in the USA [34]. Subsequently, a number of research groups developed
and documented prototype iris recognition systems working with highly
cooperative subjects at close distances [5, 14, 38, 40, 53, 57, 59, 65, 73].

These systems have shown promising performance on diverse databases
of hundreds of iris images. More recently, efforts have been aimed at
allowing for iris recognition at somewhat greater distances and with less
active participation on the part of the subject [18,26]. Again, these systems
have shown interesting levels of performance.

More anecdotally, a notion akin to automated iris recognition came to
popular attention in the James Bond film Never Say Never Again, as charac-
ters are depicted having images of their eye captured for the purpose of
identification [25].

This chapter unfolds along the following lines. This section has served to
introduce the notion of iris recognition as the basis for a biometric approach
to verifying or identifying persons. The Section 3.2 reviews relevant facts
about the anatomy and physiology of the iris. Section 3.3 provides an over-
view of approaches to sensing for the capture of iris images to drive recogni-
tion. Section 3.4 describes approaches to representing and matching iris
signatures. Section 3.5 describes extant iris recognition systems, including
the evaluation of their performance. Finally, section six provides a look at
future directions. Throughout this discussion, the iris recognition systems
and components developed by Daugman [12-16] and Wildes et al. [64-69]
will serve as the major sources of illustration owing to the fact that they are
the best documented approaches in the public domain literature.
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3.2 Anatomical and Physiological Underpinnings

To appreciate the richness of the iris as a pattern for recognition, it is useful to
consider its structure in a bit of detail. In gross terms, the iris is part of the
uveal, or middle, coat of the eye. It is a thin diaphragm stretching across the
anterior portion of the eye and supported by the lens; see Figure 3.2. This sup-
port gives it the shape of a truncated cone in three dimensions. At its base, the
iris is attached to the eye’s cilliary body. At the opposite end it opens into the
pupil, typically slightly to the nasal side and below center. The cornea lies in
front of the iris and provides a transparent, protective covering.

Anterior border layer

Nevi Crypt Collarette

Pupillary frill

. / .

Iris Pupil
Sphincter pupillae
— muscle

Pigment eplthellum -
Ciliary bod
Y y Dilatator puplllae
muscle

Ciliary zone — fcuor?;:za”e

Crypt

Figure 3.2 Anatomy of the human iris. The upper panelillustrates the structure of the iris seenin a
transverse section. The lower panel illustrates the structure of the iris seen in a frontal sector. The
visual appearance of the human iris derives from its anatomical structure. R. Wildes, Iris recognition:
an emerging biometric technology. Proceedings of the IEEE, 85(9), 1348-1363,1997 (© 1997 IEEE)
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Atafiner grain of analysis, the iris is composed of several layers. The pos-
terior surface is composed of heavily pigmented epithelial cells that make it
impenetrable to light. Anterior to this layer two muscles are located that
work in cooperation to control the size of the pupil. The stromal layer is
next; it consists of collagenous connective tissue,arranged in arch-like pro-
cesses. Corkscrew shaped blood vessels also are present in this layer,
arranged along the radial direction. Finally, the anterior border layer com-
pletes the stratification.

The anterior border layer is distinguished from the stromal layer by its
increased density, especially in terms of chromatophores, i.e. individual
pigment cells.

The visual appearance of the iris is a direct result of its multilayered
structure. The anterior surface of the iris is seen to be divided into a central
pupillary zone and a surrounding cilliary zone. The border of these two
areas is termed the collarette; it appears as a zigzag circumferential ridge
resulting as the anterior border layer ends abruptly near the pupil. The
cilliary zone contains many interlacing ridges resulting from stromal sup-
port. Contractile lines that are present in this region can vary with the state
of the pupil. Additional meridional striations result from the radiating
vasculature. Further variations in appearance owe to crypts (irregular
atrophy of the anterior border layer), nevi (small elevations of the anterior
border layer) and freckles (local collections of chromatophores). In com-
parison, the pupillary zone can be relatively flat. Often, however, it shows
radiating spoke-like processes and a pigment frill where the posterior
layer’s heavily pigmented tissue shows at the pupil boundary. Significantly,
an image taken of the iris with a standard video camera can capture many
of the anatomical details just described; see Figure 3.3.

Iris color results from the differential absorption of light impinging on
the pigmented cells in the anterior border layer. When there is little
pigmentation in the anterior border layer, light reflects back from the
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Figure 3.3 Anatomy of the iris visible in an optical image.
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posterior epithelium and is scattered as it passes through the stroma to
yield a blue appearance. Progressive levels of anterior pigmentation lead to
darker colored irises.

Claims that the structure of the iris is unique to an individual and is
stable with age come from two main sources. The first source of evidence
comes from clinical observations. During the course of examining large
numbers of eyes, ophthalmologists [23] and anatomists [1] have noted that
the detailed spatial pattern of an iris, even the left and right irises of a
single person, seems to be unique. Further, in cases with repeated observa-
tions, the patterns seem to vary little, at least past childhood. The second
source of evidence comes from developmental biology [37,41].In this liter-
ature one finds that while the general structure of the iris is genetically
determined, the particulars of its minutiae are critically dependent on cir-
cumstances (e.g. the initial conditions in the embryonic precursor to the
iris). Therefore they are highly unlikely to be replicated via the natural
course of events. For example, the shape of the collarette depends on the
particulars of how the anterior border layer recedes to allow for the mature
pupil. Rarely, the developmental process goes awry, yielding only a rudi-
mentary iris (aniridia) or a marked displacement (corectopia) or shape
distortion (colobloma) of the pupil [37, 47]. Developmental evidence also
bears on issues of stability with age. Certain parts of the iris (e.g. the
vasculature) are largely in place at birth; whereas, others (e.g. the muscula-
ture) mature around two years of age [1, 37]. Of particular significance for
the purposes of recognition is the fact that pigmentation patterning con-
tinues until adolescence [1, 49, 62]. Also, the average pupil size (for an indi-
vidual) increases slightly until adolescence [1]. Following adolescence the
healthy iris varies little for the rest of life, although slight depigmentation
and shrinking of the average pupillary opening are standard with advanced
age [1,47]. Various diseases of the eye can drastically alter the appearance
of the iris [45, 47]. Also, certain drug treatments for eye disease (e.g.
prostoglandin-based treatment of glaucoma) may alter iris pigmentation.
Further, it appears that intensive exposure to certain environmental con-
taminants (e.g. metals) can alter iris pigmentation [45, 47]. However, these
conditions are rare. Claims that the iris changes with more general states of
health (iridology) have been discredited [3, 70].

Another interesting aspect of the physical characteristics of the iris from
a biometric point of view has to do with its moment to moment dynamics.
Due to the complex interplay of the iris’s muscles, the diameter of the pupil
is in a constant state of small oscillation at a rate of approximately 0.5 Hz, a
movement referred to as hippus [1,17]. Potentially, this movement could be
monitored to make sure that a live specimen is being evaluated. Further,
since the iris reacts very quickly to changes in impinging illumination (e.g.
on the order of hundreds of milliseconds for contraction), monitoring the
reaction to a controlled illuminant could provide similar evidence. In con-
trast, upon morbidity the iris contracts and hardens, facts that may have
ramifications for forensics.

On the whole, the anatomy and physiology of the iris suggest that it provides
arich source for biometric-based personal verification and identification. The
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iris tissue shows substantial visually apparent spatial detail. Moreover, the pat-
terns of the minutiae are highly distinctive to an individual and, following
childhood, typically stable with age. Nevertheless, it is important to note that
large-scale studies that specifically address the distinctiveness and stability of
the iris, especially for biometrics, have yet to be performed. Further details of
iris structure can be found in the biomedical literature (e.g. [1,17, 50]).

3.3 Sensing

Due to the differential nature of how light is reflected from the iris minutiae,
optical sensing is well suited to acquisition of an iris image for recognition
purposes. Still, acquisition of a high-quality iris image, while remaining
non-invasive to human subjects, is one of the major challenges of automated
iris recognition. Given that the iris is a relatively small (typically about 1 cm
in diameter), dark object, and that people are very sensitive about their eyes,
this matter requires careful engineering. Several points are of particular con-
cern. First, it is desirable to acquire images of the iris with sufficient resolu-
tion and sharpness to support recognition. Second, it is important to have
good contrast in the iris pattern while restricting illumination to be within
limits of eye safety and comfort. Third, the iris must be well framed (i.e. cen-
tered) without unduly constraining the subject (i.e. preferably without
requiring the subject to employ an eyepiece, chin rest or other contact posi-
tioning that would be invasive). Further, as an integral part of this process,
artifacts in the acquired images (due to specular reflections, optical aberra-
tions etc.) should be eliminated as much as possible.

In response to these challenges of optically imaging an iris for recogni-
tion, two kinds of approach have been developed. One type of approach
makes use of passive sensing while requiring considerable active participa-
tion by the subject to self-position for centering and focus. Examples of this
approach have been demonstrated at sensor to subject distances under 0.5 m.
A second type of approach makes use of active sensing to acquire images of
the iris with only modest participation on the part of the subject, e.g. the sub-
ject must simply stand still and look forward, while the system automatically
adjusts its optical parameters to best accommodate the subject. Examples of
this approach have been demonstrated to distances of 0.75 m. In the
remainder of this section examples of each approach are presented.

Functional diagrams of two passive sensor rigs that have been developed
for iris image acquisition are shown in Figure 3.4. Both of the depicted sys-
tems respond to the fundamental issue of spatial resolution using standard
optics. For example, the apparatus reported by Daugman captures images
with the iris diameter typically between 100 and 200 pixels from a distance of
46 to 15 cm using a standard lens and video camera with video rate capture.
Similarly, the apparatus reported by Wildes et al. images the iris with approx-
imately 256 pixels across the diameter from 20 cm using a standard lens and
a silicon-intensified camera (to enable imaging with low illumination levels
[28]) with video rate capture. Due to the need to keep the illumination level
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Figure 3.4 Passive sensing approaches to iris image acquisition. The upper diagram shows a
schematic diagram of the Daugman [14] image acquisition rig. The lower diagram shows a sche-
matic diagram of the Wildes et al. [65] image acquisition rig. R. Wildes, Iris recognition: an
emerging biometric technology. Proceedings of the IEEE,85(9),1348-1363,1997 (© 1997 IEEE)

relatively low for subject comfort and safety, the optical aperture cannot be
too small (e.g. f-stop 11). Therefore, both systems have fairly small depths of
field, approximately 1 cm. Motion blur due to eye movements typically is not
problematic, given the video rate capture and the assumption that the sub-
ject is cooperating in attempting to maintain a steady gaze. Empirically, the
overall spatial resolution that results from these designs appears to be suffi-
cient to support iris recognition. Unfortunately, neither Daugman nor
Wildes et al. went so far as to document the combined camera/lens modula-
tion transfer function for their particular optical assemblies.

Interestingly, both systems essentially eschew color information in their
use of monochrome cameras with 8 bit gray level resolution. Presumably,
color information could provide additional discriminatory power. Also,
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color could be of use for initial coarse indexing through large iris data-
bases.For now, it is interesting to note that empirical studies to date suggest
the adequacy of monochrome level information alone (see, for example,
Section 3.5).

In order to cope with the inherent variability of ambient illumination,
extant approaches to iris image sensing provide a controlled source of illumi-
nation as a part of their method. Such illumination of the iris must be con-
cerned with the trade-off between revealing the detail in a potentially low-
contrast pattern (e.g. due to relatively uniform dense pigmentation of dark
irises) and issues of eye comfort and safety [44]. As originally documented, the
Daugman and Wildes et al. sensor systems both made use of illumination with
spectral energy concentrated in the visible range. More recently, illumination
for iris recognition has tended to concentrate on near infrared sources, princi-
pally to decrease invasiveness and with an aim of realizing a source that is
invisible to human subjects. To date, however, while the resulting light typi-
cally is not annoying to subjects, it is not invisible, as a dull red glow is per-
ceived: the use of commercially available near-infrared sources that are
adequate to illuminate the iris for recognition has not made it possible to
achieve total invisibility to the human eye; the bandwidth of available sources
overlaps sufficiently with the sensitivity of human photoreceptors to drive
perception. Significantly, an additional benefit of iris imaging in the infrared
is that irises that appear as relatively dark and patternless in the visible spec-
trum are revealed to have patterns of comparable richness to other more obvi-
ously textured irises. The increase in apparent detail is due to the fact that the
principal iris pigment, melanin (which, when concentrated, yields dark col-
ored irises in the visible spectrum), absorbs poorly in the infrared and hence
allows the structural patterns of the iris to be imaged with greater contrast.

An interesting difference between the illumination solutions described in
Daugman and Wildes et al. has to do with the former’s use of a compact
(unpolarized) source, while the latter employs a diffuse polarized source.
The compact source yields a particularly simple solution. Further, by careful
positioning of the light source below the operator, reflections of the point
source by eye glasses can be avoided in the imaged iris. However, without
placing undue restriction on the subject, it is difficult to reliably position the
specular reflection at the eye’s cornea outside the iris region. Therefore this
design requires that the region of the image where the point source is seen
(the lower quadrant of the iris as the system was originally instantiated)
must be omitted during matching, since it is dominated by artifacts. The
latter design results in an illumination rig that is more complex; however,
certain advantages result. First, the use of matched circular polarizers at the
light source and the camera essentially eliminates the specular reflection of
the light source 2. This allows for more of the iris detail to be available for

2 Light emerging from the circular polarizer will have a particular sense of rotation.
When this light strikes a specularly reflecting surface (e.g. the cornea) the light that
is reflected back is still polarized, but has reversed sense. This reversed sense light is
not passed through the camera’s filter and is thereby blocked from forming an
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Figure 3.5 Captured iris image. An example iris image as captured by the Wildes et al. passive
sensor is shown. Notice that this initial stage of sensing captures not only the iris but also sur-
rounding portions of the eye region. Subsequent processing must more precisely localize the iris
per se.R.Wildes, Iris recognition:an emerging biometric technology. Proceedings of the IEEE, 85(9),
1348-1363,1997 (© 1997 IEEE)

subsequent processing. Secondly, the coupling of a low light level camera (a
silicon intensified camera [29]) with a diffuse illuminant allows for a level of
illumination that is entirely unobjectionable to human subjects.

Positioning of the iris for image capture is concerned with framing all of
the iris in the camera’s field of view with good focus. Both the Daugman and
Wildes et al. systems require the subject to self-position their eye region in
front of the camera. Daugman’s system provides the subject with live video
feedback via a miniature LCD display, placed in line with the camera’s optics
via a beam splitter. This allows the subject to see what the camera is cap-
turing and adjust their position accordingly. During this process the system
is continually acquiring images. Once a series of images of sufficient quality
is acquired, one image is automatically forwarded for subsequent processing.
Image quality is assessed by looking for high-contrast edges marking the
boundarybetween theiris and the sclera. In contrast, the Wildes et al. system
provides a reticle to aid the subject in positioning.

As the subject maneuvers, the relative misalignment of cross-hairs pro-
vides continuous visual feedback regarding the accuracy of the current
position. Once the subject has completed the alignment, image capture is
activated via a button press. An example acquired iris image, as captured by
the Wildes et al. approach is shown in Figure 3.5.

image. In contrast, the diffusely reflecting parts of the eye (e.g. the iris) scatter the
impinging light. This light is passed through the camera’s filter, and is subsequently
available for image formation [33]. Interestingly, a similar solution using crossed
polarizers (e.g. vertical at the illuminant and horizontal at the camera) is not
appropriate for this application: the birefringence of the eye’s cornea yields a low-
frequency artifact in the acquired images [11].
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Subjectively, both of the described approaches to positioning are fairly
easy for a human subject to master. However, since the potential for truly
non-invasive assessment is one of the intriguing aspects of iris recognition,
itis worth underlining the degree of operator participation that is required
in these systems. While physical contact is avoided, the level of required
cooperativity may still prevent the systems from widespread application. It
is to this limitation that an active sensing approach to iris image acquisi-
tion can respond, as documented next.

Research initiated at Sarnoff Corporation [26] and subsequently trans-
ferred to Sensar Incorporated [18] for refinement and commercialization
has yielded the most non-invasive approach to iris image capture that has
been documented to date. For capture, a subject merely needs to stand still
and face forward with their head in an acquisition volume of 60° vertical by
45° horizontal and a distance of approximately 0.38 to 0.76 m, all measured
from the front-center of the acquisition rig. Capture of an image that has
proven suitable to drive iris recognition algorithms can then be achieved
totally automatically, typically within 2-10 seconds.

The developed approach makes use of active vision techniques whereby
a wide field of view binocular camera apparatus localizes the head and eye
within the entire acquisition volume and then drives a narrow field of view
camera to point,zoom and focus on the area immediately surrounding the
iris. The image captured by the narrow field of view camera is then used for
recognition purposes. Illumination is provided by a pair of LED near-
infrared (narrow band, peak energy approximately 880 nm) illumination
panels that cover the entire acquisition volume. The resulting lighting is
not annoying to humans and is perceived as a dull red glow. A schematic
diagram of the approach is shown in Figure 3.6.

The wide field of view binocular camera apparatus is charged with local-
izing the eye region of a subject in three dimensions with respect to the
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Figure 3.6 Active sensing approach to iris image acquisition. A schematic diagram of an active
vision approach to iris image acquisition [18, 26].



Chapter 3 - Iris Recognition 73

image acquisition platform. To accomplish this task, standard techniques in
binocular stereo from computer vision are employed [21, 60]. Two standard
monochrome video cameras outfitted with wide field of view lenses are
employed. The cameras are arranged with relative horizontal displacement,
parallel optical axes, overlapping fields of view that cover the acquisition
volume and geometric calibration that allows pixel measurements to be con-
verted to scene measurements. Owing to the geometry of this situation,
three-dimensional points in the viewed scene project to the images as two-
dimensional features; the two-dimensional features associated with a scene
point are imaged with a spatial displacement in the two images that depends
on the distance to the cameras. Correspondingly, measured displacement
between matched image features allows for recovery of the three-dimen-
sional location of a projected scene point through a process of triangulation.
For the particular system of interest, matching between points in the
acquired image pair is accomplished via a correlation search algorithm that
systematically shifts and compares small spatial windows across the images
of concern. During an initial stage of processing, the overall head region is
localized as that region in 3-space that is closest to the acquisition platform.
Subsequently, a facial feature template matching algorithm operates within
the head region to localize the eye region. The coordinates of the eye region
are then used to drive the narrow field of view apparatus to capture a high-
resolution iris image. Operations associated with the wide field of view
apparatus are performed on a specialized image processing accelerator
board. Code for the described algorithms running on this system allows for
continuous generation of 3D coordinates for the eye at a rate of 2 Hz.

The narrow field of view apparatus consists of a pan/tilt mirror assembly,
a fixed focal length lens with computer-controlled focus axis and a stan-
dard monochrome video camera. Eye position estimates delivered by the
wide field of view apparatus are mapped to a pan/tilt/focus triple via a
look-up-table generated as part of system calibration. After an initial
motorized pan/tilt/focus adjustment, processing local to the narrow field
of view apparatus serves to refine the capture quality through better cen-
tering, focusing and a rotational transformation that compensates for
apparent torsional error arising from the pan/tilt steering mirror. All pro-
cessing for this apparatus is performed without any special acceleration on
a 166 MHz PC processor. Final capture time is data-dependent, but is typi-
cally between 2-10 seconds. Acquisition with this overall approach has
allowed for capture of images of quality similar to that achieved with pas-
sive image acquisition platforms (e.g. 300 pixels on the iris diameter and
modulation transfer function empirically capable of supporting iris recog-
nition), albeit while requiring far less subject participation.

3.4 Iris signature representation and matching

Following image acquisition, the portion of the image that corresponds to
theiris needs to belocalized from its surroundings. The iris image data can
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then be brought under a representation to yield an iris signature for
matching against similarly acquired, localized and represented irises. The
next three subsections of this chapter discuss issues in localization, repre-
sentation and matching.

3.4.1 Localization

Without placing undue constraints on the human subject, image acquisi-
tion of the iris cannot be expected to yield an image containing only the
iris. Rather, image acquisition will capture the iris as part of a larger image
that also contains data derived from the immediately surrounding eye
region; see, for example Figure 3.5. Therefore, prior to performing iris pat-
tern matching, it is important to localize that portion of the acquired image
that corresponds to an iris. In particular, it is necessary to localize that por-
tion of the image derived from inside the limbus (the border between the
sclera and the iris) and outside the pupil. Further, if the eyelids are
occluding part of the iris, then only that portion of the image below the
upper eyelid and above the lower eyelid should be included.

Interestingly, the image contrast of these various iris boundaries can be
quite variable. For example, owing to the relative spectral reflectance of the
sclera and iris (in particular its melanin pigment) the limbic boundary is
typically imaged with higher contrast in the visible than the infrared por-
tion of the spectrum. For the case of the pupillary boundary, the image con-
trast between a heavily pigmented iris and its pupil can be quite small.
Further, while the pupil typically is darker than the iris, the reverse rela-
tionship can hold in cases of cataract: the clouded lens leads to a significant
amount of backscattered light. Like the other boundaries, eyelid contrast
can be quite variable, depending on the relative pigmentation in the skin
and the iris. The eyelid boundary also can be irregular due to the presence
of eyelashes. Taken together, these observations suggest that iris localiza-
tion must be sensitive to a wide range of edge contrasts, robust to irregular
borders and capable of dealing with variable occlusion.

Reference to how the Daugman and Wildes et al. approaches perform iris
localization further illustrates the issues. Both of these systems make use of
first derivatives of image intensity to signal the location of edges that cor-
respond to the borders of the iris. Here, the notion is that the magnitude of
the derivative across an imaged border will show a local maximum due to
the local change of image intensity. Also, both systems model the various
boundaries that delimit the iris with simple geometric models. For
example, they both model the limbus and pupil with circular contours. The
Wildes et al. system also explicitly models the upper and lower eyelids with
parabolic arcs. In initial implementation, the Daugman system simply
excluded the upper and lower most portions of the image where eyelid
occlusion was most likely to occur; subsequent refinements include explicit
eyelid localization. In both systems, the expected configuration of model
components is used to fine-tune the image intensity derivative informa-
tion. In particular, for the limbic boundary the derivatives are filtered to be
selective for vertical edges. This directional selectivity is motivated by the
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fact that, even in the face of occluding eyelids, the left and right portions of
the limbus should be visible and oriented near the vertical (assuming that
the head is in an upright position). Similarly, the derivatives are filtered to
be selective for horizontal information when locating the eyelid borders. In
contrast, since the entire (roughly circular) pupillary boundary is expected
to be present in the image, the derivative information is used in a more iso-
tropic fashion for localization of this structure. In practice, this fine tuning
of the image information has proven to be critical for accurate localization.
For example, without such tuning the fits can be driven astray by
competing image structures (e.g. eyelids interfering with limbic
localization).

The two approaches differ mostly in the way that they search their
parameter spaces to fit the contour models to the image information. In
order to understand how these searches proceed, let I(x, y) represent the
image intensity value at location (x, y) and let circular contours (for the
limbic and pupillary boundaries) be parametrized by center location,
(%o ¥c),and radius, r. The Daugman approach fits the circular contours via
gradient ascent on the parameters (x., y, ) so as to maximize

9 oy # 16y
arG(r) § 27y ds
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where G(r) = (I/MG)exp[—(r —19)2 /202]is a radial Gaussian with center
ro and standard deviation o that smooths the image to select the spatial
scale of edges under consideration, * symbolizes convolution, ds is an ele-
ment of circular arc and division by 277 serves to normalize the integral. In
order to incorporate directional tuning of the image derivative, the arc of
integration, ds,is restricted to the left and right quadrants (i.e. near vertical
edges), when fitting the limbic boundary. This arc is considered over a
fuller range when fitting the pupillary boundary; however, the lower quad-
rant of the image is still omitted due to the artifact of the specular reflec-
tion of the illuminant in that region (see Section 3.3). Following
localization of the circular boundaries, the eyelids are localized as being
within the limbic boundary by fitting a spline contour parametrizationin a
fashion analogous to that used for the circular parametrization. In imple-
mentation, the contour-fitting procedure is discretized with finite differ-
ences serving for derivatives and summation used to instantiate integrals
and convolutions. More generally, fitting contours to images via this type of
optimization formulation is a standard machine vision technique, often
referred to as active contour modeling; see, for example, [35, 54, 72].

The Wildes et al. approach performs its contour fitting in two steps. First,
the image intensity information is converted into a binary edge-map.
Second, the edge points vote to instantiate particular contour parameter
values. The edge-map is recovered via gradient-based edge detection [52,
60]. This operation consists of thresholding the magnitude of the image
intensity gradient, i.e. |VG(x,y)*I(x,y), where V =(d/dx,d/dy) while
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G(x,y) =1/ 2702 )exp{-{(x—x¢)2 +(y—y0)2]/ 202} is a two-dimensional
Gaussian with center (xg, y9) and standard deviation o that smooths the
image to select the spatial scale of edges under consideration. In order to
incorporate directional tuning, the image intensity derivatives are
weighted to favor certain ranges of orientation prior to taking the magni-
tude. For example, prior to contributing to the fit of the limbic boundary
contour, the derivatives are weighted to be selective for vertical edges. The
voting procedure is realized via Hough transforms [29, 30] on parametric
definitions of the iris boundary contours. In particular, for the circular
limbic or pupillary boundaries and a set of recovered edge points, (xj,yj),
j=1...,n,a Hough transform is defined as

n
H(xc)yc:r) = Zh(xjryj;xcyyc)r)
=i

where

1 ifg(xj>ij<:syc>r):0

h(xj,yj,xc,yc,r)z{o otherwise

with
g(xjs)’jxcayor) Z(xj —x¢)? +()’j _)’c)2 -r

For each edge point (xj, yj), g(xi, Vj X6 Yoo r) = 0 for every parameter triple
(xc» ¥o> 7) that represents a circ17e through that point. Correspondingly, the
parameter triple that maximizes H is common to the largest number of
edge points and is a reasonable choice to represent the contour of interest.
In implementation, the maximizing parameter set is computed by building
H(x, yc, 7) as an array that is indexed by discretized values for x., y. and r.
Once populated, the array is scanned for the triple that defines its largest
value. Contours for the upper and lower eyelids are fit in a similar fashion
using parametrized parabolic arcs in place of the circle parametrization
g(xj,yj, Xo Yoo 1). Just as the Daugman system relies on standard techniques
for iris localization, edge detection followed by a Hough transform is a
standard machine vision technique for fitting simple contour models to
images [52, 60].

Both approaches to localizing the iris have proven to be successful in the
targeted application. The histogram-based approach to model fitting
should avoid problems with local minima that the active contour model’s
gradient descent procedure might experience. However, by operating more
directly with the image derivatives, the active contour approach avoids the
inevitable thresholding involved in generating a binary edge map. More
generally,both approaches are likely to encounter difficulties if required to
deal with images that contain broader regions of the surrounding face than
the immediate eye region. For example, such images are likely to result
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Figure 3.7 lllustrative results of iris localization.Given an acquired image, it is necessary to sepa-
rate the iris from the surroundings. Taking as input the iris image shown in Figure 3.5, automated
processing delineates that portion which corresponds to the iris. R. Wildes, Iris recognition: an
emerging biometric technology. Proceedings of the IEEE, 85(9), 1348—1363,1997 (© 1997 IEEE)

from image acquisition rigs that require less subject participation than
those currently in place. Here, the additional image “clutter” is likely to
drive the current, relatively simple, model fitters to poor results. Recent
extensions to the Wildes et al. approach for iris localization take steps
along these directions [9]. Still, complete solutions to this type of situation
most likely will entail a preliminary coarse eye localization procedure to
seed iris localization proper, e.g. as provided by the active sensing
approach descibed in Section 3.3 [18, 26]. In any case, following successful
iris localization, the portion of the captured image that corresponds to the
iris can be delimited. Figure 3.7 provides an example result of iris localiza-
tion as performed by the Wildes et al. system.

3.4.2 Representation

The distinctive spatial characteristics of the human iris are manifest at a
variety of scales. For example, distinguishing structures range from the
overall shape of the iris to the distribution of tiny crypts and detailed tex-
ture. To capture this range of spatial detail, it is advantageous to make use
of a multiscale representation. Both of the approaches to iris signature rep-
resentation that are under discussion make use of bandpass image decom-
positions to avail themselves of multiscale information.

The Daugman approach makes use of a decomposition derived from
application of a two-dimensional version of Gabor filters [24, 31] to the
image data. Since the Daugman system converts to polar coordinates, (,0),
during matching, it is convenient to give the filters in a corresponding form
as

H(r,0) = e—io(0—00)e ~(r-10)2 la? ¢ ~i( 600 )2 /2

where a and 8 co-vary in inverse proportion to w to generate a set of quad-
rature pair frequency selective filters, with center locations specified by
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(70> Op). These filters are particularly notable for their ability to achieve
good joint localization in the spatial and frequency domains. Further,
owing to their quadrature nature, these filters can capture information
about local phase. Following the Gabor decomposition, the Daugman
approach compresses its representation by retaining only the sign of the
convolution profile. For a filter given with bandpass parameters «, 8 and
and location (ry, 0y) a pair of bits (h ,h g ) are generated according to

hg =1 if 9{(Jpjlg—iw(Qo—W)e—(ro—p)z/052e—i(eo—w)z/ﬁz I(p,w)pdpdi/)JZO
hg =0 if 9{(Jpj.ls—iw(Go—il/)e—(ro—P)z/0!2e—i(eo—wz/ﬂz I(p,1p)pdpd1p)<0
hg =1 if 3( Jp J.ﬁ—iw(Go—W)e—(ro—P)z la? e —i(0g—)? /2 I(p,w)pdpdw)zo

hg =0 if S( jpjﬁ—iwwo—we—(ro—p)z/aze—i(eo—wﬂ 182 I(p,w)pdpde<0

with R() and 3() capturing the real and imaginary filter outputs, respec-
tively. As originally realized, the parameters ry,6,a, 8 and w are sampled so
as to yield a 256 byte signature that serves as the basis for subsequent pro-
cessing. Subsequent developments augment this code with an equal
number of masking bytes that serve to distinguish areas that arise from iris
tissue as opposed to artifacts (e.g. specular reflections, eyelashes); how the
mask is computed is not specified [16].

The Wildes et al. approach makes use of an isotropic bandpass decompo-
sition derived from application of Laplacian of Gaussian (LoG) filters [27,
31] to the image data. The LoG filters can be specified via the form

2
_L I—L e—p2/2(72
mo4 202

with o the standard deviation of the Gaussian and p the radial distance of a
point from the filter’s center. In practice, the filtered image is realized as a
Laplacian pyramid [8, 31]. This representation is defined procedurally in
terms of a cascade of small support Gaussian-like filters. In particular, let
w=[14641}]/16 be a one-dimensional mask and W = wlw be the two-
dimensional mask that results from taking the outer product of w with
itself. Given an image of interest, I, the construction of a Laplacian pyramid
begins by convolving I with Wso as to yield a set of low-pass filtered images
gk according to

§k=W>gi1)y,
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with g¢g =1 and ()|, symbolizing downsampling by a factor of 2 in each
image dimension. The kth level of the Laplacian pyramid Iy is formed as the
difference between gx and gx+1, with g1, expanded before subtraction so
that it matches the sampling rate of gi. The expansion is accomplished by
upsampling and interpolation:

Ik =gk —4W *(gks1)1,

where () 1, indicates upsampling by a factor of 2 via insertion of a row and
column of zeros between each row and column of the original image. The
generating kernel Wis used as the interpolation filter and the factor of 4 is
necessary because % of the samples in the image are newly inserted zeros.
The resulting Laplacian pyramid, constructed with four levels, serves as the
iris signature for subsequent matching. The difference of Gaussians that
the construction of this representation entails yields a good approximation
to Laplacian of Gaussian filtering [43]. Additionally, it is of note for effi-
cient storage and processing, as lower frequency bands are subsampled
successively without loss of information beyond that introduced by the fil-
tering. In implementation, Laplacian pyramid construction follows in a
straightforward fashion from its procedural definition.

By retaining only the sign of the Gabor filter output, the representational
approach that is used by Daugman yields a remarkably parsimonious rep-
resentation of an iris. Indeed, a representation with a size of 256 bytes can
be accommodated on the magnetic stripe affixed to the back of standard
credit/debit cards [7]. In contrast, the Wildes et al. representation is
derived directly from the filtered image for size on the order of the number
of bytes in the iris region of the originally captured image. However, by
retaining more of the available iris information the Wildes et al. approach
might be capable of making finer-grained distinctions between different
irises. Alternatively, by retaining more information in the representation,
the Wildes et al. approach may show superior performance if less informa-
tion is available in the captured iris image, e.g. due to reduced resolution
imaging conditions. Since large-scale studies of iris recognition are cur-
rently lacking, it is too early to tell exactly how much information is neces-
sary for adequate discrimination in the face of sizable samples from the
human population. In any case, in deriving their representations from
bandpass filtering operations, both approaches capitalize on the multiscale
structure of the iris. For the sake of illustration, an example multiscale rep-
resentation of an iris as recovered by the Wildes et al. approach is shown in
Figure 3.8.

3.4.3 Matching

Iris matching can be understood as a three-stage process. The first stage is
concerned with establishing a spatial correspondence between two iris sig-
natures that are to be compared. Given correspondence, the second stage is
concerned with quantifying the goodness of match between two iris
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Figure 3.8 Multiscale signature representation for iris matching. Distinctive features of the iris
are manifestacross a range of spatial scales.Pattern matching is well served by a bandpass decom-
position spanning high to low spatial frequency.A compact representation results from successive
subsampling of lower frequency bands. The localized iris of Figure 3.7 is shown under such a
multiscale representation.R. Wildes, Iris recognition: an emerging biometric technology. Proceed-
ings of the IEEE, 85(9), 1348-1363, 1997 (© 1997 IEEE)

signatures. The third stage is concerned with making a decision about
whether or not two signatures derive from the same physical iris, based on
the goodness of match. The remainder of this section describes these three
stages in detail.

3.4.3.1 Correspondence

In order to make a detailed comparison between two iris signatures it is
necessary to establish a precise correspondence between characteristic
structures across the pair. Given the combination of required subject par-
ticipation and the capabilities of sensor platforms currently in use, the key
geometric degrees of freedom that must be compensated for in the under-
lyingiris data are shift, scaling and rotation. Shift accounts for offsets of the
eye in the plane parallel to the camera’s sensor array. Scale accounts for off-
sets along the camera’s optical axis. Rotation accounts for deviation in
angular position about the optical axis. Another degree of freedom of
potential interest is that of pupil dilation. The size of the pupil varies with
the level of ambient illumination, subject arousal and various other influ-
ences [1,17,50]. As noted in Section 3.2, the details of an iris’s pattern can
vary with the state of pupil size.

Both the Daugman and Wildes et al. approaches compensate for shift,
scaling and rotation in the underlying iris data. For both systems, iris local-
ization is charged with isolating an iris in a larger acquired image and
thereby essentially accomplishes alignment for image shift. Daugman’s
system uses radial scaling to compensate for overall size as well as a simple
model of pupil variation based on linear stretching. The scaling serves to
map Cartesian image coordinates (x, y) to polar image coordinates (r, 6)
according to
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x(r,0) = (1—1)xp (0) +7x1(0)
y(r,0) = A=1)yp (0)+7y1(6)

where r lies on [0, 1] and 6 is cyclic over [0, 27], while (x,(6), y,(0)) and
(x1(0), y1(0)) are the coordinates of the pupillary and limbic boundaries in
the direction 6. Rotation is compensated for by brute force search: explic-
itly shifting an iris signature in 6 by various amounts during matching.

The Wildes et al. approach uses an image registration technique to com-
pensate for both scaling and rotation. This approach geometrically pro-
jects an image, I,(x, y), into alignment with a comparison image, I.(x, y),
according to a mapping function (u(x, y), v(x, y)) such that, for all (x, y), the
image intensity value at (x, y) - (u(x, y), v(x, y)) in I, is close to that at (x, y)
in I.. More precisely, the mapping function (u, v) is taken to minimize

jxjy(zc(x,y) — I (x—u, y—v))2dxdy

while being constrained to capture a similarity transformation of image
coordinates (x, y) to (x’, '), i.e.

[)-C)mel)

with s a scaling factor and R(¢) a matrix representing rotation by ¢. In
implementation, given a pair of iris images, I, and I, the warping parame-
ters, s and ¢, are recovered via an iterative minimization procedure [2]. As
originally implemented, this approach did not compensate for the effects of
pupil dilation. Instead, the fact that a controlled (visible) illuminant was
always in place during image capture was relied upon to bring pupils to a
single size for an individual operator (ignoring effects of arousal etc.).

As with much of the processing that the two approaches under consider-
ation perform, the methods for establishing correspondences between two
irises seem to be adequate for controlled assessment scenarios. Once again,
however, more sophisticated methods may prove to be necessary in more
relaxed scenarios. For example, a simple linear stretching model of pupil
dilation does not capture the complex physical nature of this process, e.g.
the coiling of blood vessels and the arching of stromal fibers [48,71]. Simi-
larly, more complicated global geometric compensations will be necessary
if full perspective distortions (e.g. foreshortening) become significant.

3.4.3.2 Match goodness

Given the fairly controlled image acquisitions that currently are enforced
iniris recognition systems and the collateral success of extant correspon-
dence mechanisms, an appropriate match metric can be based on direct
pointwise comparisons between primitives in the corresponding signa-
ture representations. The Daugman approach quantifies this matter by
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computing the percentage of mismatched bits between a pair of iris repre-
sentations,i.e. the normalized Hamming distance [32].Letting A and B be
two iris signatures to be compared, this quantity can be calculated as

| =208
2048 J.Z:lAj ©B;

with subscript j indexing bit position and @ denoting the exclusive-OR
operator. (The exclusive-OR is a Boolean operator that equals 1 if and only
if its operands differ.) The result of this computation is then used as the
goodness of match, with smaller values indicating better matches. The
exclusive-OR of corresponding bits in the acquired and database iris repre-
sentations can be calculated with negligible computational expense. This
allows the system to compare an acquired representation with interesting
numbers of database entries (e.g. a raw comparison rate of approximately
10° per second using a 300 MHz processor.) As implemented, this compar-
ison rate is exploited to yield a brute force solution not just to verification,
but also to identification, i.e. sequential examination of each record in
moderate size databases. While this search ability is impressive, identifica-
tion in the presence of significantly larger databases might require a clev-
erer indexing strategy.

The Wildes et al. system employs a somewhat more elaborate procedure to
quantify the goodness of match. The approach is based on normalized corre-
lation between two signatures (i.e. pyramid representations) of interest. In
discrete form, normalized correlation can be defined in the following
fashion. Let p;[i, j] and p,[i, j] be two image arrays of size n X m. Further, let
wy =@/ nm)Z 2 pilij] and oy <[ nm)EL 5 (pyli jl-41)2 ]2 be
the mean and standard deviation for the intensities ot1 p1» respectively. Also,
let 4, and 0, be similarly defined with reference to p,. Then the normalized
correlation between p; and p, can be defined as

S 2 (ol fl= ) (palin 1= )

nmaoi0,

Normalized correlation captures the same type of information as stan-
dard correlation (i.e. integrated similarity of corresponding points in the
regions); however, it also accounts for local variations in image intensity
that corrupt standard correlation [60]. This robustness comes about as
the mean intensities are subtracted in the numerator of the correlation
ratio, while the standard deviations appear in the denominator. In imple-
mentation, the correlations are performed discretely over small blocks of
pixels (8 x 8) in each spatial frequency band of the Laplacian pyramid rep-
resentations. A goodness of match is subsequently derived for each band
by combining the block correlation values via the median statistic.
Blocking combined with the median operation allows for local adjustments
of matching and a degree of outlier detection and thereby provides
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robustness against mismatches due to noise, misalignment and occlusion
(e.g.a stray eyelash). As implemented, this method has been applied to the
verification task only.

3.4.3.3 Decision

The final subtask of matching is to evaluate the goodness of match values to
make a final judgement as to whether two signatures under consideration
do (authentic) or do not (impostor) derive from the same physical iris. In
the Daugman approach, this amounts to choosing a separation point in the
space of (normalized) Hamming distances between iris signatures: Dis-
tances smaller than the separation point will be taken as indicative of
authentics; those larger will be taken as indicative of impostors®. An appeal
to statistical decision theory [39, 58] is made in an attempt to provide a
principled approach to selecting the separation point. There, given appro-
priate distributions for the two events to be distinguished (i.e. authentic vs.
impostor), the optimal decision strategy is defined by taking the separation
as the point at which the two distributions cross-over. This decision
strategy is optimal in the sense that it leads to equal probability of false
accept and false reject errors. (Of course, even with a theoretically
“optimal” decision point in hand, one is free to choose either a more con-
servative or more liberal criterion according to the needs of a given instal-
lation.) In order to calculate the cross-over point, sample populations of
impostors and authentics were each fit with parametrically defined distri-
butions. This was necessary since no data, i.e. Hamming distances, were
observed in the cross-over region. Binomial distributions [19] were used
for the empirical fits. A binomial distribution is given as

n
pk) =(k}uka—P>n—k

where

ny_ n!
(kj_(n—k)!k!

is the number of k combinations of n distinguishable items. This formula
gives the probability of k successes in n independent Bernoulli trials. A
Bernoulli trial, in turn, is defined to generate an experimental value of a
discrete random variable v according to the distribution

3 As documented, both the Daugman and Wildes et al. approaches remain agnostic
about how to deal with cases that lie at their separation points, where the goodness
of match is supposed to be equally supportive of deciding authentic or impostor. In
empirical evaluations, it appears that neither system has been confronted with this
situation (see Section 3.5).
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1-P Yo =0
pV(VO) =<P Y0 =1
0 otherwise

with an outcome of v = 1 taken as a success and an outcome of v = 0 taken as
a failure. The use of a binomial distribution was justified for the case of
impostor matches based on the distinctiveness of different irises. That is,
the matching of bits between a pair of representations from different irises
was taken to be a series of Bernoulli trials. However, not all of the bit
matches were taken as independent due to the presence of inherent correla-
tions in iris structure as will as correlations introduced during processing.
Significantly, no such justification was given for the modeling of the
authentics.

In the Wildes et al. approach, the decision making process must combine
the four goodness of match measurements that are calculated by the pre-
vious stage of processing (i.e. one for each pass band in the Laplacian pyr-
amid representation that comprises a signature) into a single accept/reject
judgement. Here, recourse is made to standard techniques from pattern
classification. In particular, the notion that is appealed to is to combine the
values in a fashion so that the variance within a class of iris data is mini-
mized, while the variance between different classes of iris data is maxi-
mized. The linear function that provides such a solution is well known and
is given by Fisher’s Linear Discriminant [20, 22]. This function can be
defined in the following fashion. Let there be n d-dimensional samples q, 1,
of which are from a set .A and n; of which are from a set 7. For example, in
the current application each sample corresponds to a set of multiscale
goodness of match measurements, while the classes to be distinguished are
the authentics and impostors. Fisher’s linear discriminant defines a weight
vector w such that the ratio of between class variance to within class vari-
ance is maximized for the transformed samples wTq. To formalize this
notion, let u, =(Xqc 4q)/n; be the d-dimensional mean for q € A and simi-
larly for u;. A measure of variance within a class of data can be given in
terms of a scatter matrix with the form

Sa= 2@ ua)q—pua)T
qe A

for A and with S; similarly defined for Z. The total within class scatter is
given as Sy, = S, + S;. A corresponding measure of variance between classes
can be defined in terms of the scatter matrix

St =(ta —pi)(ta —ui)T

With the preceding definitions in hand, the expression
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describes the ratio of between to within class variance of the transformed
samples wq. Finally, the use of a little calculus and linear algebra leads to
the conclusion that the w which maximizes this ratio is given as

w ZSJVI(,ua — i)

Interestingly, S, does not appear in this formula for w since it simply scales
the overall result, without otherwise changing the separation. To apply this
discriminant function to classification,a separation point must be defined in
its range: values above this point will be taken as derived from class .A; values
below this point will be taken as derived from class Z. In the current applica-
tion, the separation point is taken as the midpoint between the transformed
means of the samples from .4 and 7, i.e. %a) T(ua +u;). If the probabilities of
the measurements given either class are normally distributed and have equal
variance, (i.e. p(q|.A) =1/ \/Eo)exp[— (|q—al?)/202%]with 02 the variance
[19], and similarly for Z), then this choice of separation point can be shown
to be optimal (i.e. equal probability of false accept and false reject errors).
However, it is heuristic for the case of iris match measurements where these
assumptions are not known to hold. In implementation, the discriminant
was defined empirically based on a set of iris training data.

While both of the decision methods have performed well to date, the under-
lying data modeling assumptions need to be rigorously evaluated against a
larger corpus of data. Both of the methods rely on the assumptions that the
impostor and authentic populations can each be modeled with single distribu-
tions. A basic tenet of iris recognition is that different irises are highly distinct.
Therefore, it is reasonable to view the distribution of impostors as varying
about a central tendency dictated by some notion of independence, e.g. a 50%
chance of individual bits matching in the Daugman approach or low correla-
tion values for the Wildes ef al. approach. Indeed, empirically this seems to be
the case for both approaches. However, there is no such theoretical underpin-
ning for modeling the authentics with a single distribution. In fact, one might
argue that authentics would be best modeled by a mixture of distributions
[63], perhaps even one distribution for repeat occurrences of each iris. From
an empirical point of view, it is of concern that the current decision strategies
are derived from rather small samples of the population (i.e. of the order of 102
or 10%). This matter is exacerbated by the fact that little data has been reported
in the cross-over regions for the decisions, exactly the points of most concern.
To properly resolve these issues it will be necessary to consider a larger sample
of iris data than the current systems have employed.

3.4.3.4 Acaveat

Both of the reviewed approaches to matching are based on methods thatare
closely tied to the recorded image intensities. More abstract representa-
tions may be necessary to deal with greater variation in the appearance of
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any one iris, e.g. as might result from more relaxed image acquisition. One
way to deal with greater variation would be to extract and match sets of fea-
tures that are expected to be more robust to photometric and geometric
distortions in the acquired images. In particular, features that bear a closer
and more explicit relationship to physical structures of the iris might
exhibit the desired behavior. For example, preliminary results indicate that
multiscale blob matching could be valuable in this regard [40, 66]. This
approach relies on the correspondence between the dark and light blob
structures that typically are apparentin iris images and iris structures such
as crypts, freckles, nevi and striations. If current methods in iris pattern
matching begin to break down in future applications, then such symbolic
approaches will deserve consideration. However, it is worth noting that the
added robustness that these approaches might yield will most likely come
with increased computational expense.

3.5 Systems and performance

Following on the foregoing discussion, the main functional components of
extant iris recognition systems consist of image acquisition and signature
representation/matching; see Figure 3.9. Both the Daugman and Wildes et
al. approaches have been instantiated in working systems and have been
awarded US patents [15,68,69]. Initial laboratory versions of both systems
have been realized with commercially available hardware components
(optics, illumination, computer workstation to support image processing)
and custom image processing software. Similarly, the described approach
to active image acquistion has been instantiated in a working system and
awarded a US patent [10]. An initial laboratory version of this system was
realized with commercially available hardware components, bolstered with
a special-purpose image processing accelerator board and custom image
processing software. This system was further refined and packaged so that
it could be subjected to field trials [46]. Finally, the Daugman iris recogni-
tion approach has also been introduced as a commercial product, first
through IriScan and subsequently through Iridian [56]. This system
embodies largely the same approach as that of the laboratory system, albeit
with further optimization and use of special-purpose hardware for a more
compact product.

Two reports of laboratory-based experiments with the Daugman system
are available. In the first experiment [14], 592 irises were represented as
derived from 323 persons. An average of approximately 3 images were taken
of each iris. (The time lags involved in repeat captures of a single iris were
not reported.) The irises involved spanned the range of common iris colors:
blue, hazel, green and brown. This preparation allowed for evaluation of
authentics and impostors across a representative range of iris pigmentations
and with some passage of time. In the face of this data set, the system exhib-
ited no false accepts and no false rejects. In an attempt to analyze the data
from this experiment, binomial distributions were fit to both the observed
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Figure 3.9 Schematic diagram of iris recognition system. Given a subject to be evaluated (left of
upper row) relative to a database of iris records (left of lower row), recognition proceeds in two
major steps. The first step is image acquisition, which yields an image of the subject’s eye region.
The second step is signature representation and matching, which produces a decision, D.For verifi-
cation, the decision is a yes/no response relative to a particular pre-specified database entry; for
identification, the decision is a record (possibly null) that has been indexed relative to a larger set
of entries.

authentic and impostor scores,i.e. as previously described during the discus-
sion of matching. The fits were used to calculate the cross-over error rate for
false accepts and false rejects as 1 in 131,000. Further, d’, a measure of the
separability of two distributions used in statistical decision theory [39, 58],
calculated as the absolute difference of the means, divided by a conjoint mea-
sure of the standard deviations, was found to be 8.4.

In the second experiment with the Daugman system [16], 2,150 iris
images were compared, including 10 images of the same iris for 70 subjects.
In this case the images were acquired with a variety of different image
acquisition platforms. Other details of the experiment were unspecified
(e.g.nature of image acquisition platforms, time lag between repeat acqui-
sitions). Here it was found that d” was decreased to 7.3. It also was noted
that for a subset of iris images acquired under “ideal” conditions (same
camera with fixed zoom, same illumination, same subject to sensor dis-
tance), it was possible to increase d” to 14.1. Interpretation of the reported
statistics requires caution. As noted during the discussion of matching, jus-
tification for fitting the observed data with binomial distributions for cal-
culating cross-over error rates is problematic. From a theoretical point of
view, it is not clear why a binomial distribution is appropriate for the case
of authentics. From an empirical point of view, the fits are based on small



88 Biometric Systems

samples of the populations and data is lacking in the critical cross-over
region. Similarly, the calculation of d” assumed that the distributions were
well characterized by their means and standard deviations, again without
appropriate justification. Indeed, general theoretical analyses of biometric
data suggests that they are not well characterized in this fashion, e.g.
authentic distributions are typically multimodal [63]. With regard to visual
inspection of the particular distributions at hand, it appears that at the
very least they exhibit a pronounced skew. Nevertheless, it is worth noting
that for all cases it was possible to select empirically a single decision point
that allowed perfect separation of the authentic and impostor
distributions.

The Wildes et al. laboratory system also has been the subject of empirical
evaluation [65]. In this study, a total of 60 different irises were represented
as derived from 40 persons. For each iris 10 images were captured: 5 at an
initial session and 5 approximately 1 month latter. Of note is the fact that
this sample included identical twins. Again, the common range of iris
colors (blue, hazel, green and brown) was represented. This preparation
allowed for the same types of comparison as the previously described
experiments. There were no observed false positives or false negatives in
the evaluation of this corpus of data. In this case, statistical analysis was
eschewed owing to the small sample size. However, at a qualitative level, the
data for authentics and impostors were well separated. In subjective
reports, subjects found the system to be unobjectionable.

The laboratory version of the active vision approach to iris image acqui-
sition has been evaluated in terms of its ability to support iris recognition
by using it as the image acquisition “front end” to the Daugman approach
to signature representation and matching. The details of these studies are
less well documented; nevertheless, they are interesting to review as cor-
roborating evidence of the efficacy of iris recognition, especially as the
images are acquired while making fewer demands on the subject. In one
study [26], iris images were acquired from 618 subjects on two occasions;
once for enrollment and once for verification (time lag unspecified). The
verification was 98.9% successful, with all failures coming about as false
rejections. In all cases, evaluation was complete within 10 seconds. The fail-
ures were reported as being due to specular reflections from the eye/
eyewear or, in one case, the subject being outside the capture volume of the
apparatus. The field test prototype of this approach has also been the sub-
ject of tests, both in the lab and in the field [46]. Laboratory tests (with
unspecified number of subjects and other details) led to no false accepts
and a false reject rate of approximately 0.5%. Field trials wherein the
system was used by the Nationwide Building Society in Swindon, UK, ran
for six months with over 1,000 participants. Unfortunately, no quantitative
data on recognition accuracy was reported; however, user acceptance was
reported to be above 90%.

All of the tests described so far were conducted by iris recognition
system developers. Two additional tests of iris recognition have been con-
ducted by independent evaluation teams. Both of these tests have consid-
ered commercial iris recognition systems marketed by IriScan/Iridian. In
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the first of these tests, a preproduction system was evaluated [6]. In this
study the system was installed in a public space at Sandia National Labora-
tories, USA. Subjects consisted of volunteers from the Sandia community.
The study was conducted in two phases. In the first phase, 199 irises were
represented as derived from 122 people. Following enrollment the subjects
made a total of 878 attempts to use the system in identification mode over a
period of 8 days. Of these attempts, 89 false rejects were recorded; however,
for 47 of these cases the subject made a retry and all but 16 of these were
accepted. All of these errors were traced to either reflections from eyewear
that obscured the iris or user difficulty (e.g. difficulty in self-positioning).
No false accepts were recorded. In the second phase, 96 of the people
involved in the first phase attempted an identification relative to a database
with 403 entries, none of which corresponded to the subjects in question.
Once again, no false accepts were recorded. In subjective evaluation, sub-
jects found the system generally unobjectionable; however, some reports of
discomfort with the illuminant were reported.

In the second independent test, a commercially available hardware
system was evaluated using algorithms specially modified to support
testing [42]. This test was conducted in the UK at the National Physics Lab-
oratory and also included evaluations of commercial systems for face, fin-
gerprint, hand, vein and voice recognition. The general test scenario was
that of verification in a normal office environment (albeit with controlled,
near-constant ambient illumination), with cooperative non-habituated
users. The evaluation used 200 volunteers from the test site, extended over a
period of three months and was conducted in accordance with accepted
testing standards in the biometrics community [61]. The “typical” separa-
tion between enrollment and verification was one to two months. Various
statistics were compiled for all systems, including failure to enrol rate,
failure to acquire rates, false match vs. false non-match rates and user
throughput (defined in terms of time differences logged between consecu-
tive transactions). In terms of failure to enrol, iris recognition achieved a
0.5% rate (third worst among systems evaluated) as it failed to enrol a blind
eye. No failures to acquire were logged for iris recognition. Because the
images were selected for storage based on a pre-set matching score
threshold, it was impossible to plot an ROC for false match vs. false non-
match rates. However, using the provided threshold no false matches were
observed in approximately two million cross-comparisons. At this same
threshold approximately 2% false non-matches were observed. To put these
numbers somewhat in perspective, when an evaluated fingerprint system
had its decision threshold set to achieve just one false match (< 0.001%), its
false non-match rate was approximately 7%: apart from iris recognition
this was the lowest false non-match rate for a single false match rate across
all tested systems. Finally, the median throughput for iris recognition was
10 seconds, a number comparable to that of other systems.

Overall, the two iris recognition systems that are being used for illustra-
tion have performed remarkably well under preliminary testing. Empirical
tests of other approaches to automated iris recognition also are generally
positive [5,38,53,59,73]. However, given that experiments were conducted
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on samples of the order of 102, or in one case 102, (i.e.number of irises in the
experiments) from a population on the order of 1010 (i.e. total number of
human irises), one must be cautious in the extrapolation of these results.
Nevertheless, the results speak in favor of iris recognition as a promising
biometric technology.

3.6 Future directions

Future directions for iris recognition can be thought of in terms of two
broad categories of endeavors: technology development and scientific
inquiry into biometric-based human identification. In terms of technology
development, two major directions for future research are present. One of
these directions comes from consideration of what can be accomplished if
one is willing to acceptiris image capture under relatively constrained situ-
ations, e.g. that required by the described passive acquisition systems.
Under such restrictions, further developments could be focused on
yielding ever more compact systems that can be easily incorporated into
consumer products where access control is desired (e.g. automobiles, per-
sonal computers, various handheld devices). While requiring careful atten-
tion to engineering detail (e.g. in miniaturization of optics, algorithmic
optimization), there should be no outstanding obstacles along this path.
Preliminary results along these lines already have been reported [46].

The second major direction for technology development arises as one
attempts to push the operational envelop of iris recognition to include
more unconstrained acquisition scenarios. Can iris recognition be per-
formed at greater subject to sensor distances while remaining unobtrusive?
How much subject motion can be tolerated during image capture? Can per-
formance be made more robust to uncontrolled ambient illumination? Is it
possible for iris recognition to be accomplished covertly, i.e. with the sub-
ject totally unaware that they are under observation? The development of
systems that can respond to these queries will entail consideration of com-
puter vision and image processing techniques for optical and illumination
design, image stabilization, target detection, tracking, image enhancement
and control. To some extent, extant technology can be exploited to marshal
initial attacks along relevant paths. It is likely, however, that additional
basic research in computer vision and image processing will be required to
fully respond to the challenges at hand. As a step along these directions,
Figure 3.10 shows an iris image that was captured at 10 m subject to sensor
distance. Here, a commercially available video camera with 1 m focal
length lens was coupled with a semi-collimated near infrared illumination
source to yield an image with resolution and contrast that has proven suc-
cessful to drive iris recognition at closer distances.

A complementary direction for future research comes about if one thinks
in terms of the science of biometrics-based human identification. At the
most basic level, little is known about the intrinsic information content of
the human iris in support of human identification. While the general
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Figure 3.10 Toward iris recognition at a distance. An interesting direction for future research in

iris recognition is to relax constraints observed by extant systems.As a step in this direction, an iris
image captured at 10 m subject to sensor distance is shown.

anatomical basis of iris features are known (as described in Section 3.2),
studies still need to be conducted to reveal the discriminatory information
content of these structures apropos human identification. In particular, at
the level of individual algorithmic approaches to iris signature representa-
tion and matching, studies need to be performed that reveal exactly what
information is required for recognition. For example, one could attempt to
construct something akin to a modulation transfer function (MTF) for a
given approach that specifies the minimal image requirements (e.g. in
terms of spatial frequency content) that are required to support recogni-
tion at various levels of performance. A significant number of human irises
will need to be sampled to produce such characterizations.

Atamore operational level of performance analysis, studies of iris recog-
nition systems need to be performed wherein details of acquisition are sys-
tematically manipulated, documented and reported. Parameters of interest
include, geometric and photometric aspects of the experimental stage (e.g.
MTF of the optical platform, level of illumination at the iris, subject to
sensor distance, subject attitude relative to sensor, arrangement of ambient
illuminants),length of time monitored and temporal lag between template
construction and recognition attempt. Similarly, details of captured irises
and relevant personal accessories need to be properly documented in these
same studies (e.g. eye color, eyewear). Along these lines, it is important that
recognition results derived from executing iris recognition algorithms on
this data be reported in a meaningful fashion, i.e. through observation of
accepted standards for reporting recognition rates in the biometrics com-
munity, such as Receiver Operator Characteristics (ROCs) [63] and Rank
Order Analyses [51]. More generally, if iris recognition is to make solid sci-
entific advances, then future tests of iris recognition systems must conform
to accepted practices in the evaluation of biometric devices [55, 61, 63].
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Face Recognition

Chengjun Liu and Harry Wechsler

4,1 Introduction

Face recognition falls into the broadly defined area of biometrics, which is
concerned with the verification and recognition of a person’s identity by
means of unique appearance or behavioral characteristics. Appearance
characteristics include hand, fingerprint, eye, iris, retina and face, while
behavioral characteristics include signature, voice, keystroke and grip. Auto-
mated fingerprint recognition, speaker and speech recognition, and iris and
retina recognition are all examples of “active” biometric tasks. Face recogni-
tion,however, is usually “passive”, as it does not require people’s cooperation
to look into an iris scanner, to place their hands on a fingerprint reader, or to
speak to a close-by microphone. The unobtrusive nature of face recognition
makes it more suitable for wide range surveillance and security applications.
In particular, an automated face recognition system is capable of capturing
face images from a distance using a video camera, and the face recognition
algorithms can process the data captured: detect, track and finally recognize
people sought, such as terrorists or drug traffickers.

Face recognition involves computer recognition of personal identity
based on geometric or statistical features derived from face images [11,
12,18,69,77].Even though humans can detect and identify faces in a scene
with little or no effort, building an automated system that accomplishes
such objectives is very challenging. The challenges are even more pro-
found when one considers the large variations in the visual stimulus due
to illumination conditions, viewing directions or poses, facial expression,
aging, and disguises such as facial hair, glasses or cosmetics. The enor-
mity of the problem has involved hundreds of scientists in interdisci-
plinary research, but the ultimate solution remains elusive [57, 58,64, 79].
Facerecognition research provides cutting edge technologies in commer-
cial, law enforcement and military applications. An automated vision
system that performs the functions of face detection, verification and rec-
ognition will find countless unobtrusive applications, such as airport
security and access control, building (i.e. embassies) surveillance and
monitoring, human-computer intelligent interaction and perceptual
interfaces, and smart environments at home, in the office,and in cars [12,
18,57,59,69,79].

97
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4.2 Background

An automated face recognition system includes several related face pro-
cessing tasks, such as detection of a pattern as a face, face tracking in a
video sequence, face verification, and face recognition. Face detection gen-
erally learns the statistical models of the face and non-face images, and
then applies a two-class classification rule to discriminate between face
and non-face patterns. Face tracking predicts the motion of faces in a
sequence of images based on their previous trajectories and estimates the
current and future positions of those faces. While face verification is
mainly concerned with authenticating a claimed identity posed by a
person, such as “Is she the person who she claims to be?”, face recognition
focuses on recognizing the identity of a person from a database of known
individuals.

Figure 4.1 shows a block diagram of the overall face recognition system.
When an input image is presented to the face recognition system, the
system first performs face detection and facial landmark detection, such as
the detection of the centers of the eyes. The system then implements the
normalization and cropping procedures, which perform the following
three tasks: (1) spatial normalization, which aligns the centers of the eyes
to predefined locations and fixes the number of pixels between the eyes
(interocular distance) via rotation and scaling transformations; (2) facial
region extraction, which crops the facial region that contains only the
face, so that the performance of face recognition is not affected by the fac-
tors not related to the face itself, such as hair styles; and (3) intensity nor-
malization, which converts the facial region to a vector by concatenating its
rows (or columns), and then normalizes the pixels in the vector to zero
mean and unit variance. Finally, the system extracts features with high
discriminating power for face recognition.

Performance evaluation is an important factor for a face recognition
system. The strength and weakness of an automated face recognition
system are evaluated using standard databases and objective performance
statistics. The face recognition vendor tests [63] are designed to evaluate
state-of-the-art vendor face recognition systems, and the detailed perfor-
mance of those competing vendor systems can be found in the reports [9]
and [63]. The FRVT 2002 [63], for example, reported that (1) under normal
indoor illumination, the current state-of-the-art vendor face recognition
systems reach 90% verification rate at a false accept rate of 1%; (2) in out-
door illumination, the best vendor system can only get 50% verification
rate at a 1% false accept rate; and (3) the three-dimensional morphable
models technique [10] is capable of improving non-frontal face recogni-
tion. These results suggest that illumination and pose are still challenging

Input Face detection »| Cropping Feature Face

image Facial landmark Normalization extraction recognition
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Figure 4.1 Block diagram of the overall face recognition system.
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research areas for face recognition, and a 3D model-based approach
provides a promising method for dealing with pose variations.

4.3 Face Detection

Face detection is the first stage of an automated face recognition system,
since a face has to be located in the overall image before it is recognized.
Earlier efforts had been focused on correlation or template matching,
matched filtering, sub-space methods, deformable templates etc. [60, 82].
For comprehensive surveys of these early methods, see [12], [69] and [73].
Recent approaches emphasize data-driven learning-based techniques,
such as statistical modeling methods [41, 53, 70, 71, 74], neural network-
based learning methods [67,68,74], statistical learning theory and Support
Vector Machine (SVM) based methods [31, 32, 54], Markov random field
based methods [17, 66], and color-based face detection [33].

Statistical methods usually start with the estimation of the distributions
of the face and non-face patterns, and then apply a pattern classifier or a
face detector to search over a range of scales and locations for possible
human faces. Neural network-based methods, however, learn to discrimi-
nate the implicit distributions of the face and non-face patterns by means
of training samples and the network structure, without involving an
explicit estimation procedure.

Moghaddam and Pentland [53] applied unsupervised learning to esti-
mate the density in a high-dimensional eigenspace and derived a max-
imum likelihood method for single face detection. Rather than using
Principal Component Analysis (PCA) for dimensionality reduction, they
implemented the eigenspace decomposition as an integral part of esti-
mating the conditional Probability Density Function (pdf) in the original
high-dimensional image space. Face detection is then carried out by com-
puting multiscale saliency maps based on the maximum likelihood
formulation.

Sung and Poggio [74] presented an example-based learning method by
means of modeling the distributions of face and non-face patterns. To cope
with the variability of face images, they empirically chose six Gaussian
clusters to model the distributions for face and non-face patterns, respec-
tively. The density functions of the distributions are then fed to a multiple
layer perceptron for face detection.

Scheiderman and Kanade [70] proposed a face detector based on the esti-
mation of the posterior probability function, which captures the joint sta-
tistics of local appearance and position as well as the statistics of local
appearance in the visual world. To detect side views of a face, profile images
were added to the training set to incorporate such statistics [71].

Liu [41] recently presented a Bayesian Discriminating Features (BDF)
method for multiple frontal face detection. The BDF method, which is
trained on images from only one database yet works on test images from
diverse sources, displays robust generalization performance. First, the
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method derives a discriminating feature vector by combining the input
image, its 1-D Harr wavelet representation, and its amplitude projections.
Then statistical modeling estimates the conditional probability density
functions, or pdfs, of the face and non-face classes, respectively. While the
face class is usually modeled as a multivariate normal distribution, the non-
face class is much more difficult to model due to the fact that it includes “the
rest of the world”. The estimation of such a broad category is, in practice,
intractable. However, the BDF method derives a subset of the non-faces that
lie closest to the face class, and then models this particular subset as a
multivariate normal distribution. Finally, the Bayes classifier applies the
estimated conditional pdfs to detect multiple frontal faces in an image.

Rowley et al. [67] developed a neural network-based upright, frontal face
detection system, which applies a retinally connected neural network to
examine small windows of an image and decide whether each window con-
tains a face. The face detector, which was trained using a large number of
face and non-face examples, contains a set of neural network-based filters
and an arbitrator which merges detections from individual filters and elim-
inates overlapping detections. In order to detect faces at any degree of rota-
tion in the image plane, the system was extended to incorporate a separate
router network, which determines the orientation of the face pattern. The
pattern is then derotated back to the upright position, which can be pro-
cessed by the early developed system [68].

Hsu et al. [33] presented a color-based face detection method under vari-
able illumination and complex background. First, the method applies a
lighting compensation technique and a nonlinear color transformation to
detect skin regions in a color image. Then it generates face candidates
based on the spatial arrangement of the skin patches. Finally, the method
constructs eye, mouth and boundary maps to verify those candidates.
Experiments show that the method is capable of detecting faces over a wide
range of facial variations in color, position, scale, orientation, pose and
expression [33].

4.4 Face Recognition: Representation and
Classification

Robust face recognition schemes require both low-dimensional feature
representation for data compression purposes and enhanced discrimina-
tion abilities for subsequent image classification. The representation
methods usually start with a dimensionality reduction procedure, since the
high dimensionality of the original space makes the statistical estimation
very difficult, if not impossible, due to the fact that the high-dimensional
space is mostly empty. The discrimination methods often try to achieve
high separability between different patterns. Table 4.1 shows some popular
representation and classification techniques and some methods that apply
these techniques for face recognition.



Chapter4 - Face Recognition 101

4.4.1 Some Representation Techniques and Their Applications to
Face Recognition

Principal Component Analysis is commonly used for deriving low-dimen-
sional representations of input images. Specifically, PCA derives an
orthogonal projection basis that directly leads to dimensionality reduction
and possibly to feature selection [38]. Applying PCA technique to face rec-
ognition, Turk and Pentland [76] developed the well-known “Eigenface”
method, where the eigenfaces correspond to the eigenvectors associated
with the largest eigenvalues of the face covariance matrix. The eigenfaces
thus define a feature space, or “face space”, which drastically reduces the
dimensionality of the original space, and face recognition is then carried
out in the reduced space.

PCA, an optimal criterion for dimensionality reduction, however, does
not necessarily provide for good discrimination, since no discrimination
criteria are considered by the PCA procedure. To improve the discrimina-
tion power of PCA, one can integrate PCA, the optimal representation crite-
rion, with the Bayes classifier, the optimal classification criterion [44]. This
method, named Probabilistic Reasoning Models (PRM) [44], applies first
PCA for dimensionality reduction, and then uses the within-class scatter to
estimate the covariance matrix for each class in order to derive the condi-
tional probability density functions. Finally, the PRM method applies the
Maximum A Posteriori (MAP) rule for classification. The MAP decision
rule optimizes the class separability in the sense of Bayes error and
improves upon the PCA-based methods, which apply a criterion not related
to the Bayes error.

Shape and texture (‘shape-free’ image) coding usually applies a two-
stage process once the face has been located [8, 14, 16, 24, 40, 45]. Coding
starts by annotating the face using important internal and face boundary
points. Once these control points are located, they are aligned using trans-
lation, scaling and rotation transformations as necessary. The average of
these aligned control points defines the mean shape. The next stage then

Table 4.1 Some representation and classification techniques and their applications to face
recognition.

Techniques Face recognition methods
Representation methods PCA Eigenfaces [76], PRM [44]
Shape and texture Method [24], EFC [45]
Gabor wavelets Method [39], GFC [46], IGF
[471
Recognition methods Bayes/MAP Method [52], PRM [44]
FLD/LDA Fisherfaces [6], methods
[75], [25], EFM [44]
ICA Method [22], EICA [42]

Graph matching Elastic bunch graph [80]
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triangulates the annotated faces and warps each face to the mean shape.
The first stage yields the shape, while the second stage yields the texture.

Beymer [8] introduced a vectorized image representation consisting of
shape and texture. Vetter and Poggio [78] used such a vectorized face repre-
sentation for image synthesis from a single example view. Craw et al. [15]
and Lanitis et al. [40] developed Mahalanobis distance classifiers for face
recognition using the shape and texture representation. The Mahalanobis
distance is measured with respect to a common covariance matrix for all
classes in order to treat variations along all axes as equally significant by
giving more weight to components corresponding to smaller eigenvalues
[15]. Note that the weighting procedure does not differentiate the between-
class scatter from the within-class scatter and it suppresses the former
while reducing the latter. To address this issue and to better distinguish the
different roles of the two scatters, Edwards et al. [24] presented yet another
Mahalanobis distance classifier by using the pooled within-class
covariance matrix. Liu and Wechsler [45] developed an Enhanced Fisher
Classifier (EFC), which applies the enhanced Fisher model on the inte-
grated shape and texture features. Shape encodes the feature geometry
of a face while texture provides a normalized shape-free image. The
dimensionalities of the shape and the texture spaces are first reduced using
principal component analysis, constrained by the Enhanced Fisher Model
(EFM) for enhanced generalization. The corresponding reduced shape and
texture features are then combined through a normalization procedure to
form the integrated features that are processed by the EFM for face
recognition.

The Gabor wavelets, whose kernels are similar to the 2D receptive field
profiles of the mammalian cortical simple cells, exhibit desirable charac-
teristics of spatial locality and orientation selectivity [26]. The biological
relevance and computational properties of Gabor wavelets for image anal-
ysis have been described in [19, 20,50 and 36]. Lades et al. [39] applied the
Gabor wavelets for face recognition using dynamic link architecture
(DLA). This starts by computing the Gabor jets, and then performs a flex-
ible template comparison between the resulting image decompositions
using graph matching. Based on the 2D Gabor wavelet representation and
labeled elastic graph matching, Lyons et al. [48,49] proposed an algorithm
for two-class categorization of gender, race and facial expression. The algo-
rithm includes two steps: registration of a grid with the face using either
labeled elastic graph matching [39, 80] or manual annotation of 34 points
on every face image [49]; and categorization based on the features
extracted at grid points using Linear Discriminant Analysis (LDA). Donato
etal. [22] recently compared a method based on Gabor representation with
other techniques and found that the former gave better performance.

Liu and Wechsler [46] presented a Gabor-Fisher Classifier (GFC)
method for face recognition. The GFC method, which is robust to illumina-
tion and facial expression variability, applies the enhanced Fisher
linear discriminant model or EFM [44] to an augmented Gabor feature
vector derived from the Gabor wavelet transformation of face images. To
encompass all the features produced by the different Gabor kernels one
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concatenates the resulting Gabor wavelet features to derive an augmented
Gabor feature vector. The dimensionality of the Gabor vector space is then
reduced under the eigenvalue selectivity constraint of the EFM method to
derive a low-dimensional feature representation with enhanced discrimi-
nation power. Liu and Wechsler [46] recently developed an Independent
Gabor Features (IGF) method for face recognition. The IGF method derives
the independent Gabor features, whose independence property facilitates
the application of the PRM method [44] for classification.

4.4.2 Some Classification Techniques and Their Applications to Face
Recognition

The Bayes classifier yields the minimum error when the underlying proba-
bility density functions are known. This error, called the Bayes error, is the
optimal measure for feature effectiveness when classification is of concern,
since it is a measure of class separability [27]. The MAP Bayes decision rule
thus optimizes the class separability in the sense of the Bayes error and
should yield the optimal classification performance [27].

Moghaddam et al. [52] proposed a probabilistic similarity measure for
face image matching based on a Bayesian analysis of image deformations.
The probability density functions for the intra-object and extra-object
classes are estimated from training data and used to compute a similarity
measure. The PRM method, introduced by Liu and Wechsler [44], improves
face recognition performance by integrating PCA (the optimal representa-
tion criterion) and the Bayes classifier (the optimal classification
criterion).

Fisher Linear Discriminant (FLD), or the LDA, is a commonly used crite-
rion in pattern recognition and recently in face recognition [6, 25, 44, 75].
Intuitively, FLD derives a projection basis that separates the different class
means as far as possible and compresses the same classes as compactly as
possible. Based on FLD, a host of face recognition methods have been
developed to improve the classification accuracy and the generalization
performance [6, 25, 44, 45, 46, 75]. The Fisherfaces method [6], similar to
the methods presented by Swets and Weng [75] and by Etemad and
Chellappa [25], first applies PCA to derive a low-dimensional space, where
FLD is implemented to derive features for face recognition. These FLD-
based methods, however, are superior to the Eigenface approach for face
recognition only when the training images are representative of the range
of face (class) image variations; otherwise, the performance difference
between the Eigenface and Fisherface approaches is not significant [75].

The FLD procedure, when implemented in a high-dimensional PCA
space, often leads to overfitting [44]. Overfitting is more likely to occur for
the small training sample size scenario, which is the typical situation for
face recognition [61]. One possible remedy for this drawback is to generate
additional data artificially and thus increase the sample size [25]. Another
solution is to analyze the reasons for overfitting and propose new models
with improved generalization abilities [44]. The EFM method, developed
by Liu and Wechsler [44], addresses (concerning PCA) the range of
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principal components used and how it affects performance, and (regarding
FLD) the reasons for overfitting and how to avoid it. The EFM method
improves the generalization performance of the FLD-based scheme by bal-
ancing the spectral energy criterion for sufficient representation and the
eigenvalue spectral requirement for good generalization. This requirement
suggests that the selected PCA eigenvalues account for most of the spectral
energy of the raw data when the (trailing) eigenvalues of the within-class
scatter matrix in the reduced PCA subspace are not too small [44].

Independent Component Analysis (ICA), a powerful technique for blind
source separation, [13, 35, 37], is also applied to possible feature selection
and face recognition by Donato et al. [22]. According to Barlow [3-5], an
important characteristic of sensory processing in the brain is ‘redundancy
reduction’, or reducing dependency and deriving independent features.
Such independent features might be learned under the criterion of sparse-
ness [5] or independence [4]. Field [26] described a compact coding
scheme in terms of sparse distributed coding, whose neurobiological
implications were examined in [56]. The resulting sparse image code pos-
sesses a high degree of statistical independence among its outputs [55].
Bell and Sejnowski [7] developed an unsupervised learning method that is
based on information maximization to separate statistically independent
components in the inputs.

Donato et al. [22] applied a neural network approximation to demonstrate
the possible application of Independent Component Analysis (ICA) to face
recognition. Liu and Wechsler [42] described an Enhanced ICA (EICA)
method and its application to face recognition. The EICA method derives the
independent components of face images by using a statistical algorithm
rather than a neural network approximation. EICA, whose enhanced gener-
alization performance is achieved using a sensitivity analysis, operates in a
reduced PCA space, whose dimensionality is determined using an
eigenvalue spectrum analysis. The motivation for this aspect of EICA is that
during whitening, the eigenvalues of the covariance matrix appear in the
denominator and that the small trailing eigenvalues mostly encode noise. As
a consequence the whitening component, if used in an uncompressed image
space, would fit for misleading variations and thus generalize poorly to new
data. Liu and Wechsler [42] have also assessed the performance of the EICA
alone or when combined with other discriminant criteria such as the
Bayesian framework or the FLD criterion. Discriminant analysis shows that
the ICA criterion, when carried out in the properly compressed and whit-
ened space, performs better than the Eigenface and Fisherface methods for
face recognition, but its performance deteriorates when augmented by addi-
tional criteria such as the MAP rule of the Bayes classifier or the FLD. The
reason for the last finding is that the Mahalanobis distance embedded in the
MAP classifier duplicates to some extent the whitening component, while
using FLD is counter to the independence criterion intrinsic to EICA.

Graph matching has the potential for achieving face recognition
invariant to affine transformations or localized facial expression changes.
However, the graph nodes have to be manually defined to associate the cor-
responding nodes in the different graphs [80]. Lades et al. [39] presented a
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dynamic link architecture (DLA) for face recognition. Wiskott et al. [80]
further expanded on DLA when they developed an elastic bunch graph
matching method to label and recognize human faces. Faces are repre-
sented by labeled graphs, based on a Gabor wavelet representation of face
images. The graphs of new faces are extracted by an elastic graph matching
process and can be compared using a simple similarity function [80].

4.5 Kernel-Based Methods and 3D Model-based
Methods for Face Recognition

Kernel-based methods, such as kernel PCA, kernel FLD, and SVM, over-
come the limitations of the linear approaches by nonlinearly mapping the
input space to a high-dimensional feature space. Theoretical justifications
of applying kernel-based methods to face recognition stem from Cover’s
theorem on the separability of patterns, which states that nonlinearly sepa-
rable patterns in an input space are linearly separable with high probability
if the input space is transformed nonlinearly to a high-dimensional feature
space [30]. Computationally, kernel methods take advantage of the Mercer
equivalence condition and are feasible because the dot products in the
high-dimensional feature space are replaced by a kernel function in the
input space, while computation is related to the number of training exam-
ples rather than the dimension of the feature space.

Scholkopf et al. [72] showed that kernel PCA outperforms PCA using an
adequate nonlinear representation of input data. Mika et al. [51] presented
a kernel FLD method whose linear classification in the feature space corre-
sponds to a powerful nonlinear classification in the input space. Phillips
[62] proposed an SVM-based face recognition algorithm for both face veri-
fication and recognition, and demonstrated its superior performance over
a PCA-based method. Yang [81] presented face recognition results by
applying the kernel FLD method to two data sets: the AT&T data set con-
taining 400 images of 40 subjects and the Yale data set containing 165
images of 11 subjects. Experimental results show that the kernel FLD
method achieves lower error rates in face recognition than ICA, Eigenface
or Fisherface methods [81].

3D methods, or 3D model-based methods [2,10, 34, 83], provide potential
solutions to pose invariant face recognition [63]. 3D face models are usu-
ally derived from laser-scanned 3D heads (range data) or reconstructed
using shape from shading [2, 10, 34, 83]. Hsu and Jain [34] proposed a
method of modeling 3D human faces based on a triangular mesh model
and individual facial measurements encoding both shape and texture
information. The method provides a potential solution to face recognition
with variations in illumination, pose and facial expression. Zhao and
Chellappa [84] presented a method which applies a 3D model to synthesize
a prototype image from a given image acquired under different lighting
and viewing conditions.
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4.6 Learning the Face Space

The idea of learning the face space has been motivated by natural scene
encoding, which takes advantage of intrinsic image statistics while seeking
to derive a natural (“universal”) basis [28, 55]. The derived basis functions
have been found to closely approximate the receptive fields of simple cells
in the mammalian primary visual cortex. The receptive fields resemble var-
ious derivative-of-Gaussian (DoG) functions: spatially localized, oriented
and bandpass [55]. Barlow [4] argues that such receptive fields might arise
from unsupervised learning, subject to redundancy reduction or minimum
entropy coding. Olshausen and Field [55] derive localized oriented recep-
tive fields based on a criterion of sparseness, while Bell and Sejnowski [7]
use an independence criterion to derive qualitatively similar results.

The rationale behind a natural basis is to allow for the efficient deriva-
tion of suitable image representations corresponding to the intrinsic struc-
ture of sensory signals. The intrinsic structures are essential for processes
such as image retrieval and object recognition. Once the natural basis has
been derived, no additional training is necessary and both the training and
the testimages on future tasks are represented in terms of the already avail-
able natural basis. The natural basis, however, also has its drawbacks, i.e. it
might be too general to properly encode for a specific task. Regarding face
recognition, the class of objects to be represented is quite specific, i.e.
human face images, possibly indexed by gender, ethnicity and age; one
should thus seek and learn the face space basis rather than a “universal”
and all-encompassing natural basis. This observation also fits with knowl-
edge that the “bias/variance dilemma may be circumvented if we are
willing to purposely introduce bias, which then makes it possible to elimi-
nate the variance or reduce it significantly” [29]. Learning low-dimen-
sional representations of visual objects with extensive use of prior
knowledge has also been recently suggested by Edelman and Intrator [23]
who claim that “perceptual tasks such as similarity judgment tend to be
performed on a low dimensional representation of the sensory data. Low
dimensionality is especially important for learning, as the number of
examples required for attaining a given level of performance grows
exponentially with the dimensionality of the underlying representation
space”.

4.6.1 Evolutionary Pursuit

The problem we address now is that of learning the face space(s) from large
and diverse populations using evolution as the driving force. The dimen-
sions (“BASIS”) for the face space, to be evolved using Genetic Algorithms
(GAs), are such that their “fitness” is enhanced and driven by the classifica-
tion/discrimination (“cognitive”) and representational (“perceptual”) fac-
tors referred to earlier, and the interplay between the complexity, the cost
(“dimension”) and the (categorical) density of the face space on one hand,
and the trade-offs between faithful face reconstruction (“representation”)
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and the expected classification accuracy (“guaranteed risk”) for the face
classifier, on the other hand. The quality of the face space is also driven by
the diversity encountered while learning the face space. Characteristic of
both co-evolution and active learning methods, challenging training sam-
ples would be boosted and thus given extra weight while assessing the
fitness of the face space.

The fundamental problem, that of finding the proper mix of cognitive
(“classification”) and perceptual (“preprocessing”) processes, and in the
process deriving the optimal projection basis for face encoding, can be
addressed using Evolutionary Pursuit (EP) [43]. In analogy to (explor-
atory) pursuit methods from statistics, EP seeks to learn an optimal face
space for the dual purpose of data compression and pattern classification.
The challenges that EP has successfully met on limited population types are
characteristic of sparse functional approximation and statistical learning
theory. Specifically, EP increases the generalization ability of the face
recognizer as a result of handling the trade-off between minimizing the
empirical risk encountered during training (“performance accuracy”),and
narrowing the predicted risk (“confidence interval”) for reducing the guar-
anteed risk during future testing on unseen probe images. The prediction
risk, corresponding to the penalty factor from regularization methods,
measures the generalization ability of the object classifier, and it is driven
by the regularization index corresponding to class separation. EP imple-
ments strategies characteristic of genetic algorithms for searching the
space of possible solutions in order to determine the optimal projection
basis. EP starts by projecting the original images into a lower-dimensional
and whitened PCA space. Directed but random rotations of the basis vec-
tors in this space are then searched by GAs where evolution is driven by a
fitness function defined in terms of performance accuracy (“empirical
risk”) and class separation (“confidence interval”).

Evolutionary computation represents an emerging methodology
motivated by natural selection. Evolution takes place by maintaining
one or more populations of individuals, each of them a candidate solu-
tion, and competing for limited resources in terms of placing offsprings
in future generations. The competition is implemented via selection
mechanisms that choose from the dynamically changing populations
due to the birth and death of individuals. The selection mechanisms
evaluate the fitness value 10 of individuals based on some fitness cri-
teria (fitness functions), while the population evolves via genetic opera-
tors that reflect the concept of inheritance (offsprings resemble their
parents). When the fitness functions lack an analytical form suitable for
gradient descent or the computation involved is prohibitively expensive,
as is the case when the solution space is too large to search exhaustively,
one alternative is to use (directed) stochastic search methods for non-
linear optimization and variable selection. The unique exploration
(variations farther away from an existing population) and exploitation
(minor variations of the more fit parents) ability of evolutionary com-
putation guided by fitness values has made it possible to analyze very
complex search spaces.
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Learning the face space requires EP to search through a large number of
possible subsets of rotated axes in a properly whitened PCA space. The
rotation angles (represented by strings of bits) and the axis indicators
(indicating whether the axes are chosen or not) constitute the form of the
search space whose size (2 to the power of the length of the whole string) is
too large to search exhaustively. The number and choice of
(nonorthogonal) axes in the subsets and the angles of rotations are evolved
using genetic algorithms. GAs work by maintaining a constant-sized popu-
lation of candidate solutions known as individuals (“chromosomes™). The
power of genetic algorithms lies in their ability to exploit, in a highly effi-
cient manner, information about a large number of individuals. The search
underlying GAs are such that breadth and depth - exploration and exploi-
tation - are balanced according to the observed performance of the indi-
viduals evolved so far. By allocating more reproductive occurrences to
above average individual solutions, the overall effect is to increase the pop-
ulation’s average fitness.

Evolution is driven by a fitness function formulated as follows:

§(F)=Ga(F)+Acg(F)

where F encompasses the parameters (such as the number of axes and the
angles of rotations defining each chromosome solution) subject to
learning, the first term ¢, (F) records performance accuracy, i.e. the empir-
igal risk, the secqnd terr‘n.c.,g(F) is the gen‘era‘lization it}dex, i.e. the pre-
dicted risk,and A is a positive constant that indicates the importance of the
second term relative to the first one. Accuracy indicates the extent to which
learning has been successful so far, while the generalization index gives an
indication of the expected fitness on future trials. By combining those two
terms together with a proper weight factor A, GA can evolve balanced
results with good recognition performance and generalization abilities.
The fitness function has a similar form to the cost functional used by regu-
larization theory [65] and to the cost function used by sparse coding [55].
The cost functional of the former method exploits a regularization param-
eter to control the compromise between a term of the solution’s closeness to
the data and a term indicating the degree of regularization (‘quality’) of the
solution, while the cost function of the latter method uses a positive con-
stant to achieve a balance between a term of information preserving and a
term assessing the sparseness of the derived code.

4.6.2 Face Recognition Using Evolutionary Pursuit

We consider now the application of the EP method to learning the face
space for face recognition [43]. The experimental data consists of a subset
of 1,107 images from the FERET database, with three frontal images for
each of 369 subjects. For the first 200 subjects, the third image is acquired at
low illumination, while for the remaining 169 subjects the three face images
are acquired during different photo sessions. The last acquired image for
each subject is called the “probe”. Two images of each subject are used for
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training, with the remaining “probe”image used for testing. In other words,
the training set includes 738 images while the test set has 369 images. The
images are cropped to a size of 64 x 96 pixels and the eye coordinates are
manually located. The image background is uniform and the face regions
are not masked. Masking, as it has been usually implemented, deletes areas
of the image outside the face outline, retaining only the face proper. The
effect of such deletions on recognition performance is discussed in [45].
Shape-free face recognition methods avoid this problem by using the shape
of the outline encoded by a number of control points for subsequent
alignment and normalization [14].

Starting from a 30-dimensional PCA space, the EP method derives 26
vectors as the optimal basis for the learned face space. Note that while for
PCA the basis vectors have a natural order (the descending magnitudes of
the eigenvalues associated with each vector), this is not the case with the
projection basis derived by EP due to the rotations involved during the evo-
lutionary process. The natural order characteristic of the principal compo-
nents reflects the representational aspect of PCA and its relationship to
spectral decomposition. The very first principal components encode
global image characteristics, in analogy to low-frequency components. EP,
on the other hand, is a procedure geared primarily towards recognition and
generalization. It is also worth pointing out that while PCA derives
orthogonal basis vectors, EP’s basis vectors are usually not orthogonal.
Orthogonality is a constraint for optimal reduced-space signal representa-
tion, but not a requirement for pattern recognition. Actually, non-
orthogonality has been known to have great functional significance in bio-
logical sensory systems [21].

The EP face space approach using 26 basis vectors yields 92% recogni-
tion performance at this database size when testing on “sequestered” face
images unavailable during training. This compares favorably against
Eigenface and Fisherface methods [43]. To assess the statistical signifi-
cance of the experimental results, we implemented McNemar’s test [1] to
determine whether or not there is strong statistical evidence to indicate
that the EP method improves recognition performance over Eigenface and
Fisherface methods. We found that the EP method improves face recogni-
tion performance at a statistically significant level.

4,7 Conclusion

This chapter has surveyed recent research in face detection and recogni-
tion, discussed performance of the current face recognition systems, and
presented promising research directions. In particular, face detection
methods reviewed include statistical, neural network-based and color-
based approaches. Face recognition methods surveyed include PCA-based
approaches, shape and texture-based approaches, Gabor wavelet-based
approaches, approaches applying the Bayes classifier or MAP, FLD or LDA,
ICA, and graph matching. Some kernel-based methods and 3D model-
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based methods for face recognition are discussed. These methods provide
new research directions for potential solutions to facial recognition under
conditions of pose and illumination variation, which recent vendor tests
show are challenging issues for face recognition. Finally, a method of
learning the face space using evolutionary pursuit is also presented.
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Elements of Speaker
Verification

Herbert Gish

5.1 Introduction

The activities of automatic speaker verification and identification have a
long history going back to the early 1960s [1-3] in which we see the emer-
gence of various pattern recognition techniques and statistical methods
and exploration of features and feature selection methods. However, theo-
ries were not well supported by experimental evidence, and the selected
features were insufficient, perhaps because of limited computing
resources. With advent of more powerful computer resources and larger
and better annotated corpora such as the Switchboard Corpus [4] there has
been steady progress over the years, using more sophisticated statistical
models and training methods. In this chapter we review the current work
on speaker verification (SV) technology, describing the basic processes
and factors that affect the performance of the SV process.

5.1.1 The Speaker Verification Problem

The problem of speaker verification is that of corroborating the identity of
speakers from their voices. Our basic assumption is that the voice produc-
tion apparatus singularly characterizes the acoustic waves and emanations
that we interpret as words and sounds with the identity of the speaker. In
order to establish an identity from these acoustic events we need a model
that characterizes a speaker’s voice. Once we have created a model from the
available speech samples we are then be able to verify that an utterance
from an enrolled or target speaker (i.e. a speaker for which we have training
data) by evaluating speech that is claimed to be from the speaker with the
speaker model that we have created. If the collected speech data fits the
model then we will affirm the speech as having come from our enrollee or, if
not, reject the claim.

While the above paragraph gives the essence of speaker verification we
must now face the steps necessary to accomplish this task. The first step is
the representation of speech itself. The goal of this step is to represent the
speech in such a way that we have features that characterize the speech pro-
cess in an economical way suitable for the subsequent modeling process.
Our desire for economy is to keep the dimensionality of the representation
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sufficiently low so as to reduce burdens on modeling process. At the same
time we want to retain sufficient information in the representation such as
to keep the impairment of the identification process to a minimum.

The representation that we choose provides us with the features from
which we will construct the model for the speaker. Basically, the choice for
the representation of speech defines a feature space and the training data
fills up the feature space with feature vectors. When we are given a speech
utterance that is asserted to be from a particular enrolled speaker the ques-
tion becomes that of determining whether the collection of features gener-
ated by the utterance in question “matches” the training data.

In classical pattern recognition problems we are typically given a single
feature vector and asked whether or not it is from the training set. The SV
problem differs from the classical pattern recognition problem in that we
are comparing the test collection to the training collection and not just
determining the membership of a single observation.

While it is possible to formulate the speaker verification problem as just
comparing test data to training data, and some speaker verification sys-
tems have been built in this fashion, it has been found to be much more
effective to formulate the speaker verification problem as one in which we
ask whether:

® the test data matches the training data from the target speaker, or
® the test data more closely matches the data from other speakers.

This comparative approach makes an important difference in perfor-
mance and is justified on both theoretical grounds as well as intuitive
grounds. This process of making a decision on the basis of a comparison is
a means of model normalization, and more will be said about this later.

The intuition for the comparative approach is that if we are scoring data
that has distortions and biases these will be mitigated by comparing the
target speaker’s model to the models of other speakers. The theoretical jus-
tification is a consequence of Bayes’ Theorem. That is, if we want to deter-
mine whether our observation x was generated by target speaker T we need
to compute P(T|x), the probability of speaker T having produced the utter-
ance that generated the observed features x. From Bayes’ Theorem we can
write

_Pr (x)P(T)

P(T | x

pP(T | x) 20
where Py (x)is the probability of observing features x given using the model
for speaker T, P(T) is the prior probability that speaker T has spoken, and
(veryimportant) p(x)is the probability of observing features x irrespective
of who was speaking.

In a nutshell, a good deal of what transpires in speaker verification work
deals with the features x that are generated for an utterance: selection of the
models Pr(x) and p(x). In the Bayes formulation, p(x) can actually contain
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the model for the target speaker T.If we consider p(x)as an additive mixture
of all speakers we can write

px)=apr(x)+(1-a)pa(x)

where P4 (x) represents all speakers other than the target speaker and « is
the weighting on the target speaker model, and « is greater than 0 and less
than 1.

We now can write

P(T)
a+[A-a)pa(x)]/ pr(x)

P(T|x)=

which explicitly shows the dependence of the probability of the target
speaker as a function of the ratio of the likelihoods for the two classes, i.e.
the class of features for the target speaker T and class A of all speakers other
than the target speaker, T.

In Figure 5.1 we illustrate our view of the underlying structure of the ver-
ification problem. We see that the target speaker fills up part of feature
space,and other speakers (often called the cohort speakers or the universal
background “speaker”) will overlap the target speaker. The different
regions of feature space correspond to different phonetic units and we may
find that two speakers overlap in one part of space while they do not
overlap very much in another.

If we again let Py (x) denote the probability density function (pdf) for the
target speaker, i.e. the speaker that claims an identity, and let P4 (x) denote
the pdf for an alternate speaker or speakers (or a composite of speakers),
then this alternate set when constructed from a collection of models from
other individuals is termed a cohort set [5], and when it is created from a
composite of speakers it is often referred to as a universal background
model (UBM) [6, 7]. We form a score based on the pdfs for each of the
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Figure 5.1 Anillustration of feature space for speaker verification.
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speakers as a first step in the classification process. The score is simply the
log likelihood for each of the pdfs for the test data, i.e.

N
st = Zlog pr(x;) for the target speaker and
i=1

N
Spq = ZIOg pa(x;) for the alternate
i=1

where N is the number of feature vectors, x;, observed. A decision is made
that the claimed identity is true if the score difference (the log likelihood
ratio)

ST,A =ST —SA 2thrr_y

otherwise the claim is rejected. Here thry_,4 is the threshold value for com-
paring the target T against the alternative A.

The setting of the threshold determines the size of the errors that the ver-
ification system will make. There are two types of error to be concerned
with: (1) the error of missing a target, Py, when the target speaker is
rejected incorrectly and (2) the error of false acceptance or false alarm, Pgy,
when an impostor speaker is accepted as the target speaker.

The adjustment of the threshold enables the trade-off between the two
types of error. Increasing the threshold will reduce the frequency of false
acceptances by demanding an increase in the difference in the scores of
the target and alternative models. The price now paid for such a change in
threshold is that it is now more difficult for acceptance to occur when the
target is actually present, resulting in an increase in the false dismissals.
This trade-off between the two errors is characterized by a ROC (Receiver
Operating Characteristic) curve which is a plot of the probability of cor-
rect acceptance, which is just1—Py; versus Pga. Quite often a variant of the
ROC is currently employed: the DET curve (the detection error trade-off
curve [8]), since it allows for a more direct comparison of errors by plot-
ting Py versus Pgy directly. This is done on a logarithmic scale for easier
reading of the smaller error region. In Figure 5.2 a sample DET curve has
been plotted.

The use of the likelihood ratio between the pdf of the target speaker and
that of the alternate choice is fundamental to statistical decision making
[9]. How it is actually implemented will depend on a variety of consider-
ations and can be quite important to system performance. For example, in
speaker verification there are choices for this alternate model, usually
consisting of a cohort set or, if enough data is available,a UBM. In either
case it is believed that the best performance is achieved when this alter-
nate model is drawn from a population of speakers that share characteris-
tics with the target speaker, such as gender and channel. Keeping the
alternate model narrowly focused does, however, allow impostors that are
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Figure 5.2 Example of a DET curve based on scores from multiple speakers.

not incorporated in the alternate model to be an outlier for the alternate
model as well as the target model. An outlier is evaluated in the poorly
estimated tails of the distributions and can easily give rise to false accep-
tances. This is an important practical consideration and can be mitigated
by disallowing the acceptance of a target speaker when low values of like-
lihoods are observed.

Our characterization of speaker verification in terms of pdfs is perhaps
the most important approach to the speaker verification problem, but there
are a variety of other approaches, some of which will be noted below.

In the following we will consider the issues of modeling and coping with
variability that are the main issues for designers of SV! systems. We will
also focus, for the most part, on the problem of text-independent verifica-
tion. “Text-independent” means that there is no a priori knowledge of the
text spoken by the speaker.

1 Inreferences to the literature we will not distinguish those papers that are dealing
with the identification problem, i.e. the determination of who the speaker is, from
the SV problem, since the underlying technology will apply to both tasks.
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5.2 Features and Models

5.2.1 Speech Features

Itisin the selection of the features that we encounter the distinctive charac-
teristics of the speech process in defining this speaker verification pattern
recognition problem. At the heart of the problem is to distinguish one per-
son’s speech production mechanism from another person’s. Given that
speech is considered, at least as an initial approximation, to be a time-
varying linear filter (our vocal tract) operating on signal sources (glottal
pulses or noise generators), a reasonable feature set would characterize the
signal produced by the filter acting on the signal source. Since the spectral
domain has achieved great success in characterizing filtering operations as
well as in other aspects of speech analysis, it is natural that it forms the
basis of the features used. The time-varying character of the speech process
is captured by performing the spectral analysis at short time intervals and
repeating the analysis periodically.

Within the framework of time-varying spectral methods, a variety of fea-
tures have been considered for the problem of speaker verification. At this
point in the evolution of speaker verification, a set of features has been con-
verged upon that are employed by the majority of systems that perform
speaker verification as well as speech recognition. This convergence has
occurred because of a persistent edge in performance that goes to systems
that utilize these features. These are the Mel-frequency Cepstral Coeffi-
cients, usually referred to as MFCCs. These speech features seem particu-
larly well suited to density function models such as mixture models or
Hidden Markov Models (HMMs).

The Mel-frequency represents a warping of the frequency band that is
linear from 0 to 1 kHz and logarithmic at the higher frequencies, and the
analysis is performed over this warped axis (in principle). This warping
function has its origins in the human perception of tones. The speech
signal is constrained to a bandwidth of about 150-3500 Hz for telephone
speech and about 50 Hz-8 kHz for broadband communications. The
cepstral features are obtained by analyzing the Mel-scaled speech every
0.01 seconds over a time interval of about 20 milliseconds (nominally) in
duration. This yields the Mel-scale spectrum and the Fourier coefficients
of the logarithm of this function are produced. Depending on the system
there are about 12-20 such coefficients produced every 0.01 seconds. These
coefficients, MFCCs, are used to generate cepstral derivatives by differ-
encing techniques, resulting in about 24 to 40 features and sometimes
second derivatives. One or more normalized energy features also employed
to round out the basic feature set.

The cepstra are in effect the lower-order Fourier coefficients of the log
magnitude spectrum. By staying with the low-order coefficients the varia-
tion in the spectrum, induced by the pulsed nature of the vocal tract excita-
tion, has minimal effect.
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5.2.2 Speaker Models

Speaker models enable us to generate the scores from which we will make
decisions. As in any pattern recognition problem the choices are numerous,
and include the likes of neural networks, Support Vector Machines,
Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs), as
well as combinations of the various approaches. While some models are
capable of exploiting dependency in the sequence of feature vectors from
the target speakers, the current state-of-the-art modeling approaches,
based on Gaussian Mixture Models, treat the sequence of feature vectors as
independent random vectors. While we shall initially consider models that
do not exploit time dependence, we will consider those that do in Section
5.3 when we briefly consider text dependence.

The choice of model to use for a particular application will depend on the
specific circumstances in any particular situation, although the choice,
even to the expert, may not be clear. The major factors that will influence
any choice are the amount of data available for the speaker models and the
nature of the verification problem (is it text-independent or text-
dependent?) and the level of performance that is desired.

5.2.2.1 The Gaussian Mixture Model

At the heart of today’s state-of-the-art speaker verification systems is the
Gaussian Mixture Model (GMM). This is a probability density function
(pdf) that itself consists of a sum of multivariate Gaussian density func-
tions. Being a mixture of Gaussians, it has the ability to place mass where
collections of data training data exist. Additionally, its parameters can be
readily estimated by Maximum Likelihood (ML) training procedures
including the EM (Estimate-Maximize) algorithm [10],a well-known itera-
tive algorithm for finding the ML estimate. In practice, each speaker has a
GMM that is trained for them individually and the likelihoods generated
from the GMM form the basis for generating the speaker scores from which
a decision is made with regard to a speaker’s identity. In addition to ML
training methods it can also be trained by discriminative and adaptive
methods that we describe below.

The probability density function is given for speaker S by the sum (or
“mixture”) of M Gaussian pdfs:

M
ps(x) =Y, wispis(x)
i=1
where

1 1 _
ps (9€)=(2n)D,2|ZiS D72 <P {—z(x—ﬂi,s)tii,sl(x—Mi,s)}
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is the multivariate Gaussian density function, D is the dimension of the fea-
ture vector x,u; g is the mean of each Gaussian pdf (indexed by distribution
and speaker) and the w; g are positive weights that sum to unity. Typically
the covariance matrix, X, for each of the terms in the mixture is taken as
diagonal to reduce computational complexity and storage requirements.

5.2.2.2 Considering the Models

While there are a variety of ways of viewing model choices, an important
and perhaps insightful way for speaker verification applications is through
the approach taken to training them. The different approaches to training
are connected to the amount of training data available and provide a good
initial approach to dealing with the issues of model selection. A taxonomy
of approaches to training includes class conditional training, adaptive
training and discriminative training. This taxonomy should be considered
as a rough guide, since it is possible for the models to fall into more than
one category, and the categories can also show some similarities. Further-
more, there is a connection between the training procedure and model nor-
malization, i.e. the use of the alternate model.

5.2.2.3 (lass Conditional Modeling — Maximum Likelihood Training

When employing probability density functions for speaker models an
important approach is that of class conditional density estimation. This is
nothing more than training the models for the speakers individually from
the data collected for the particular target speaker. In the case of GMMs as
well as other families of probabilities, the parameters of the models are typ-
ically estimated by the Maximum Likelihood (ML) criterion. If we let
ps(x;0) denote the pdf of observed features, x, for speaker S, then the ML
estimate of the model parameters, 0, is specified by

A

0 =arg maxg ps(x;0)

Quite often there is no direct method for determining the ML estimate,
and often iterative methods are employed. An important iterative training
method for GMMs is the previously noted EM algorithm [10], which is
employed quite frequently in speaker verification as well as speech recog-
nition problems.

While the model for the target speaker has been estimated in a class con-
ditional manner, that is, without knowledge of the alternative choice or
choices for the speaker, the target speaker model is still employed with the
use of an alternative model (e.g. cohort speakers or UBM), when a decision
is made about the speaker’s claimed identity.

The alternative model will consist of a collection of speaker models that
have been trained in much the same way that the model has been trained
for the target speaker. It can be a large set used for all target speakers, but
can also be a set of speakers that are selected from the larger set and work
especially well with the target speaker. The likelihood generated from this
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alternative model is usually the average of the likelihoods of all the
speakers in the set. There are many variants in their use, such as averaging
just the scores from the top-scoring cohort speakers.

Another alternative, which we will discuss below, is the Universal Back-
ground Model (UBM), which is a composite model constructed from the
utterances of many speakers. The speakers that are employed for this model
will typically be selected to match the target speaker population in one or
more ways, such as gender and channel. Reynolds et al. discuss some of the
issues in buildinga UBM in [11]. We have already noted in Section 5.1.1 the
potential difficulties of matching the target too closely.

5.2.2.4 (lass Conditional Models — Discriminative Training

We have discussed above the training of class conditional models with the
traditional Maximum Likelihood approach. The process is one of finding
the model parameters, whether done by an EM algorithm or other algo-
rithm, to maximize the likelihood of the model. If the models were correct
and there was a sufficient amount of training data available we could, with
no loss in performance, stay with training of models in the class
conditional manner.

When we go to discriminative training procedures we are acknowledging
the usually correct assumption of model and data inadequacy. This is not to
say that discriminative training can solve all our problems with speaker
verification, but that it is a useful alternative. The discriminative training
of models is concerned with the important and relevant question of “How
should I select the parameters of my model or models such that we maxi-
mize the performance on our goal of speaker separability?”. In order to
accomplish this we need to move away from the ML criterion and employ as
a training criterion the actual loss function that will be employed in the
evaluation of an SV system or some other criterion that is highly correlated
with our performance metric.

The performance of an SV system is typically measured as some function
of an ROC or DET curve. For example, this can be the detection probability
at a certain false acceptance rate or the equal error rate operation point or
the area under part of a ROC curve. If the model parameters can be directly
trained to the specific measurement criterion that is employed then it can
be expected that performance improvements can be obtained even when
working with the same class of models such as GMMs or HMMs that can be
used for class conditional training.

Some of the early work using discriminative training methods in speech
applications was with speech recognition systems [12, 13]. Speaker verifi-
cation systems have more recently explored the use of discriminative
training methods, e.g. [14-17]. Rosenberg et al. [14] describe a speaker ver-
ification model in which the criterion of total number of errors was
employed, i.e. the number of false acceptances and false dismissals. The
performance gain of class conditional methods seemed substantial when
employing HMMs, which we will briefly discuss below. Heck and Konig
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[17] employ discriminative techniques to optimize a speaker verification
system at a particular operating point.

5.2.2.5 C(lass Conditional Models via Adaptation

The process of creating speaker models via adaptation starts with a generic
model for a speaker and uses the data collected from the target speaker to
tailor the generic model to the speaker. If we consider the generic model as
a prior probability distribution we can view the process of model adapta-
tion in the Bayesian framework of parameter estimation. See Reynolds et
al. [11] for a discussion of a system based on this approach.

The generic model, often referred to as a universal background model
(UBM) is typically modeled with a GMM and trained with utterances from
hundreds of speakers. To the extent that the collection of speakers is kept as
similar as possible to the target speaker, an economy is achieved in mod-
eling the UBM. For example, creating a model consisting of just males or
females is basic. The use of GMMs with of the order of 2000 mixture compo-
nents is not uncommon.

The GMM is a particularly flexible model for the purposes of speaker
adaptation. The process of adapting a model to a target speaker is to calcu-
late, for each feature vector, the likelihood for each of the terms of the UBM
mixture model. This likelihood is then converted into the probability that
the feature vector came from each of the terms. That is, Pr(i|x), the proba-
bility that the feature vector x is from the ith Gaussian pdf in the mixture is
computed. This probability is then employed in the computation of new
means and variances for each of the Gaussians in the mixture. These new
means and variances are interpolated with the original values to give new
parameters for the Gaussian pdfs in the mixture as well as new weights. If
for some terms of the original mixture there are no non-zero probabilities
for any of the features, that term will remain unchanged in the new model.

One of the advantages achieved by this modeling approach is the effi-
cient use of training data. The process of adaptation is incorporating into
the UBM the specific speaker differences. Encoding of differences can be
much more data-efficient than training a complete model. Another aspect
of the adaptation process is that when we look at it as a process of esti-
mating differences between the target speaker and the UBM we are in some
sense also creating a discriminatively trained model, albeit without an
explicit discriminative criterion.

The use of adaptation methods in conjunction with a UBM is a way to
make effective use of large amounts of available speaker data. If such data is
not available or if the data that is available is not a good match to the condi-
tions and channel of the target speaker then this approach becomes less
useful.

5.2.2.6 Other Class Conditional Models

It is possible to employ this class conditional approach with other than pdf
models for the speaker. For example, in nearest neighbor classification the
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collection of feature vectors themselves becomes the model for the speaker.
In this case the classification process would take the feature data for a test
speaker,and based on the distances of the features to the two classes, deter-
mine a score for the data. An approach based on these ideas was developed
by Higgins et al. [18] and gave good performance.

5.2.2.7 Inherently Discriminative Approaches

Class conditional models that have discriminative training imposed on
them via the imposition of a discriminative training criterion, such as we
have discussed above, form one class of discriminatively trained models.
The other class is that for which discrimination is inherent in the approach.
Such approaches include neural networks, Support Vector Machines
(SVM),and classification trees to name just a few (see [19] for a description
of the previously mentioned techniques). What these approaches have in
common is that, from the outset, the training process involves the separa-
tion of two or more classes from each other (e.g. the target speaker from the
non-target speaker). This is done either implicitly or explicitly. The result is
effectively to create a decision boundary between the classes of interest. In
the case of SVM, a linear function in feature space is employed to separate
the classes. Although this approach employs a linear function of features,
the features can be nonlinear functions of the cepstra that can resultin very
nonlinear boundaries with respect to cepstra. Classification trees employ
recursive feature selection methods for determining boundaries to sepa-
rate classes. Neural networks do not directly go after a decision boundaries
but rather create a model for P(speaker | observations) which is inherently
discriminative, since this method of training the model needs observations
from both speaker and non-speaker and the optimization criteria that are
employed are usually strongly correlated with maximizing correct
classifications.

These discriminative techniques can all be used as the basis for a speaker
verification system. For example, Schmidt and Gish [20] applied SVM tech-
niques to the SV problem and Farrell et al. [21] employed a system that
combined classification trees with neural networks to perform verifica-
tion. There are many other examples.

5.2.2.8 Model Selection

We have described above a wide variety of models that have been employed
in various speaker identification applications. The selection of the appro-
priate model for a particular application is still an art, and a variety of
approaches should be considered. Currently GMMs have shown themselves
to be adaptable to a wide variety of situations and should be one of the con-
tenders in almost any application. However, any of the discriminative
approaches, such as neural networks, offer the possibility of being more
effective in situations with limited training data, since they use all the
training data to find the decision boundary between classes rather than
modeling classes separately and then combining the separate models.
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5.3 Additional Methods for Managing Variability

Statistical models, given enough training data, should be able to handle all
the variability that we will encounter under test conditions. However, we
are usually somewhat data-starved and we must resort to other techniques
in order to improve SV performance. Below we will discuss some of the
approaches.

5.3.1 Channel Normalization and Modeling

We consider the channel to be the entire communication link over which
the speaker’s voice travels to the listener. The fact that this channel can be
different at the time of verification than at the time of speaker enrollment
can result in major degradations in verification performance if not dealt
with. Of course, the usual statistical modeling approaches cannot account
for this source of variability because they have not heard the speaker on
this particular channel during the enrollment process.

The modeling alternative is to perform some type of channel normaliza-
tion. The process of normalization is that of mitigating the effect of the
channel based upon its inherent characteristics. If we assume that the
channel can be modeled by a linear, time-invariant filter, then we can
readily predict the effect of the channel on our cepstral speech features. If
welet ¢ , denote a cepstral vector from only the speech at time nandletc,,
denote the corresponding received cepstral vector, then we can write

Crn =Csn TCchp

where c.p, ,, is the cepstral contribution from the channel. The channel con-
tribution is additive because the cepstral coefficients are the Fourier coeffi-
cients of a log spectrum. We also note that the contribution from the
channel, ¢, ,, will not actually depend on the index, n, because of our
assumption of time invariance of the channel.

Thus we see that time differences in the received cepstra will not depend
on the channel component. In particular, if we removed the mean value
of all the cepstra in an utterance we will have performed the standard
channel normalization called Cepstral Mean Subtraction (CMS). While the
use of this method of normalization can be quite effective, it does destroy
some speaker information. Since speakers have their own average cepstral
value, i.e. ¢ , has a speaker-dependent mean value, CMS will remove this
as well. However, when channel variation is an issue the loss in speaker
information will be inconsequential to the improvements obtained by
normalization.

While the assumptions of channel linearity and time-invariance may not
be strictly true, the merits of such a normalization can be seen by its cen-
tering of data about the origin in feature space to partially compensate for
the effects of channels that can cause shifts in the data.
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5.3.1.1 Other Methods for Dealing with the Channel

When we observe a speaker over an unknown linear time-invariant
channel we have seen that in cepstral feature space the speaker has been
shifted to new place. We have also seen that we can compensate for this shift
by altering the features through the process of cepstral mean subtraction
so that this shift is eliminated, albeit at the cost of losing some speaker
information.

Thus, by this process, we have created new features that are less sensitive
to channel variability. The question some researchers have pursued is
whether there are features that are highly robust to channel variation and
at the same time carry significant amounts of speaker-dependent
information.

One of the more important classes of feature candidates has been for-
mant-related features [22,23]. A formant is alocation of a peak in the short-
term spectrum,i.e.aresonant frequency of the vocal tract. Variations in the
glottal pulse timings [23] and fundamental frequency [24] have also been
examined. While all these features do carry speaker information and do
have a degree of channel invariance, difficulties in extracting these features
and modeling them have limited their utility. Some recent work by Murthy
et al. [25] using a front end that produced spectral slope information
showed significant performance improvements.

Another approach to the channel variability problem is to treat the
channel as a random disturbance and integrate its variability directly into
the scoring process for the speaker. The challenge with this approach is to
estimate a probabilistic model for the channel and perform the integration.
Gish et al. [26] modeled the time-invariant channel as a Gaussian random
vector and were able to compute the effect of the channel randomness on
the speaker model, obtaining useful gains in performance.

A recent and fairly ambitious approach for dealing with the channel has
been developed by Teunen et al. [27]. In their approach they have con-
structed a channel detector, employing it to detect the type of channel over
which the speech is received. If the current channel differs from that used
when modeling the speaker, then MAP adaptation methods are employed
to create a model for the target speaker under the current channel type.
This approach seems to make some headway on the mismatched-channel
problem, but it currently does not appear to be more effective than a
handset normalization technique that is discussed below.

5.3.1.2 Score Normalization

In much of the recent speaker verification literature much work has been
devoted to the subject of score normalization. The aim of this work is to
counter variability in scoring for the purpose of allowing scores from dif-
ferent target speakers to be evaluated as a single collection of scores. In
such a situation of score combination, if target speaker B always has better
scores with his model than any impostor, i.e. perfect verification perfor-
mance, and has his scores combined with those of speaker C, who also has
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perfect verification performance, the evaluation of their scores as a single
set could be rather poor unless some normalization is performed. This can
happen because without normalization the impostor scores for speaker C
can be, for example, greater than the non-impostor scores for speaker B.

The approaches to dealing with this problem involve simple transforma-
tions that convert the scores to zero mean and unit variance. That is, if
sT,4 (k) is the kth impostor score generated in training for the target
speaker, and we let u(st 4 (k)) denote the mean and o(st 4 (k)) denote the
standard deviation of all the impostor scores against this target speaker,
scores for this target can be normalized by

sT,4 (k)= u(sT (k)
o(st,4 (k)

ST,A,norm (k) =

When these transformation parameters are generated using impostor
speakers from a set withheld (or “sequestered”) during the training pro-
cess, the norm is called the Z-norm. When the impostor scores are gener-
ated during the testing phase from impostor speakers within the actual test
data, the norm is referred to as the T-norm. Although it might also be pos-
sible to do a similar type of normalization using “genuine” scores for each
target speaker, this is typically are not done due to lack of a sufficient
number of target speaker scores.

Normalizations can also be generated when transmission is over a tele-
phone channel where there are two different hand-set types (carbon button
and electret). This is called the H-norm. In this case one needs to be able to
detect the type of hand-set in use in the training and the test phases to be
able to apply the appropriate normalizations.

In all the above cases the shift and scaling transformation employed
cannot change the rank ordering of scores for a given speaker or channel
condition. They will enable a verification system to operate with a detec-
tion threshold that is not dependent on the speaker or the channel. For an
extensive discussion of normalization techniques, see Auckenthaler et al.
[28].

5.3.2 Constraining the Text

Thus far we have been considering text-independent verification - the case
where there is no constraint on the text spoken. In those situations, such as
access control, where it is possible to have the speaker utter a known
phrase, performance of an SV system can be greatly improved. When the
textis known in advance there is the advantage of being able to have models
that are targeted to the way the speaker says all parts of the utterance as well
as having the sequential structure. These two factors in systems can bring
about major gains over text-independent approaches.

One of the approaches originally employed in this text-dependent situa-
tion was a non-statistical, template-based method called dynamic time-
warping (DTW). An example of such a template-based system is presented
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by Furui in [29]. In this type of approach there was an attempt to match the
string of features produced by the speaker against a stored template. The
matching allowed for what was assumed to be normal variability in speaker
rhythm. A dynamic programming algorithm was employed to determine
the best alignment between the feature strings in the received speech and
the stored template. Such approaches are still in use today because of their
ability to produce useful results with very limited amounts of training data
and modest amounts of computation. When sufficient training data are
available the method of choice is that of Hidden Markov Models (HMMs)
[30] which form the basis of state-of-the-art speech recognition systems
and are much more efficient than DTW methods in characterizing the
variability in the speech process.

The HMM consists of a sequence of states with a GMM at each state.
Words consist of a sequence of phonetic units and a three-state HMM is
typically used to model a phonetic unit. Sometimes the HMM will be used
to model an entire word. At the risk of oversimplification, we can consider
an HMM to be a sequence of GMMs each tuned to a different part of each
word. Because of the state transition probabilities in the HMM model, the
states included for evaluation can be variable. Although with the use of
constrained text the actual acoustic models have increased in complexity,
almost everything else has remained the same. For example we are still con-
cerned with cohort models, discriminative training and channel normal-
ization. The previously cited paper by Rosenberg et al. [14] considers an
HMM-based verification system that is also discriminatively trained.
Below we will describe a verification systems that are based on HMM
speech recognition technology (see Section 5.5).

5.4 Measuring Performance

We have already noted that we can measure the performance of a speaker
verification system by its probability of a false dismissal versus the proba-
bility of false acceptance at a given threshold setting. As we change the sys-
tem’s detection threshold we end up with a collection of values that give the
DET (Detection Error Trade-off) curve. While this is a fairly straightfor-
ward concept, how one should proceed from the collection of scores for
individuals to the system DET curve is not uniquely defined.

For any individual, since there are typically only a few target speaker scores,
a DET curve will be highly discontinuous. We show in Figure 5.3 a DET curve
for a single target speaker for which we have a small number of target test sam-
ples and significantly more impostor scores. One approach that is used by the
National Institute of Standards and Technology in their annual evaluations
[31] is to treat all the individual scores from individual speakers as if they were
from one speaker and create the composite DET curve. This requires that a
great emphasis be placed on normalizing scores, as we have discussed above,
in order to avoid severe degradations in measured performance due to the
incommensurate scores from different target speakers.
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Figure 5.3 Example of a DET curve for a single speaker.

If one’s system has speaker- and/or channel-dependent thresholds then
such normalizations are not necessary and composite DET curves pro-
duced by employing such normalizations can actually be misleading indi-
cators of system performance. In the case of systems with speaker-
dependent thresholds (and no channel detection, for example) a more
appropriate way of combining the scores would be by combining the indi-
vidual DET curves, e.g. for a given Pgy average all the Pys. While this proce-
dure does not require score normalizations,adjustments may be needed for
variations in the number of scores provided by individual speakers. The
point is, however, that the method of performance measurement should be
in tune with the way the system will be employed. Also note that the two
examples presented do not exhaust the possible methods for developing
DET curves for collections of speakers from the various scores of
individual speakers.

While the DET or ROC curves provide a great deal of information about
SV system performance, it is often desirable to characterize the perfor-
mance of a system by a single number in order to facilitate system compari-
sons. The number often employed is the equal error rate (EER), the point on
the DET or ROC where the probability of a miss is equal to the probability
of false acceptance. The EER has found wide acceptance because it is easy to
understand, even though it may not be a desirable operating point for a
practical system. Another single measure of system performance called the
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detection cost function (DCF) involves assigning costs to the two different
types of error. Ultimately a user needs to determine the performance fac-
tors of most importance and develop the measures appropriate for the
application.

5.4.1 How Well do These Systems Perform?

Clearly, there are so many factors that affect the performance of a system that
any numbers presented must be highly qualified. The factors affecting per-
formance include the amounts of training data and the duration of the evalu-
ation data, the variability and types of channels employed, the protocols
employed in certain systems such as using additional prompts for the target
speaker, the constraints on the text, and others. Notwithstanding these
caveats, it is probably useful to provide the reader with some numbers.

We can nominally think of text-independent verification systems with
modest amounts of training data, test data and channel variation as having
an EER in the 5% to 20% range. I include such a number in order for the
reader to have some sense of performance range, as vague as it is. A system
to be described below [39], which employed large amounts of training and
test data and applied several sources of information in verifying speakers,
measured less than a 1% EER. For text-dependent systems we can have
EERs that can be an order of magnitude smaller that the numbers quoted
for text-dependent systems, again depending on many factors.

5.5 Alternative Approaches

In the approaches described below, we stay with the statistical likelihood
view of the speaker verification problem. The speech recognition
approaches we describe bring feature time-dependence, as well as new
knowledge sources, to bear on the verification problem. The systems that
employ these new sources of information can bring about major improve-
ments in verification performance if sufficient data is available for training
and testing. The second approach we consider is more narrowly focused
and shows that by judicious model selection, likelihood ratio approaches
can create robust models that give excellent performance and require sig-
nificantly less computation than GMMs.

5.5.1 Speech Recognition Approaches

The approaches that we have considered thus far, except when we were con-
sidering the constraints of text dependency, have treated the cepstra
extracted from the speech as independent events in time, and have not
exploited any of the higher level information in the speech process (e.g. pho-
netic categories), relying primarily on the general characteristics of an indi-
vidual’s vocal production mechanism for the purpose of identification.
While there have been some attempts at using various categories of phonetic
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units in the verification process the discriminative gains obtained from
their employment was mitigated by the inability to reliably extract them
from speech over communication channels. However, with improvements in
both speech and phonetic recognizers these approaches have become
important alternatives to the memoryless approaches relying on low-level
information.

An early advocate of the use of speech recognizers for speaker identifica-
tion applications was Dragon Systems [32, 33]. Their approach focused on
the recognizer’s ability to provide higher-level acoustic knowledge (con-
text-independent phonetic units) about speakers. To train the models they
adapted their speaker-independent recognizer to target speakers by
employing standard Baum-Welch HMM training procedures. The evalua-
tion process entailed performing speech recognition on a test utterance
and comparing the scores on the target speaker-trained phonetic unit with
the scores obtained by the speaker-independent recognizer. This compar-
ison provided normalized scores upon which the decision was made.

While the Dragon approach fared reasonably well in most of its direct
comparisons to other techniques, it fell short of the performance obtained
by state-of-the-art GMM approaches. In these comparisons, the scenarios
were those of rather limited available training and test data - a difficult
place to operate with a knowledge-intensive approach.

Related to the above was the use of a speech recognizer by Kimball et al.
[34] for a text-dependent application, although the motivation for the
choice was the limited amount of training data available for each speaker.
In their application, only one training sample was available for each
speaker. This training sample was used to adapt a speaker-independent
recognizer by means of Maximum Likelihood Linear Regression (MLLR)
methods. The adaptation parameters effectively became the speaker
model. The score produced by the adapted recognizer on the test utterance
became the target speaker’s score that was normalized by the scores from
cohort speakers. The system performed well with the interesting property
that overall performance was unaffected when tests were performed with
handsets different from those used in training.

5.5.2 Words (and Phonetic Units) Count

The two approaches described above both employed speech recognition
systems and used the speech recognizer to produce acoustic scores for the
target speaker. In the paper by Gauvain et al. [35], a speaker identification
system based on a phone recognizer was described. The training of the
acoustic models for target speakers was accomplished by adaptation and
since the model was a fully connected HMM, i.e. transitions permitted
between all phones at any time, the model was, to a degree, capturing the
target speaker’s use of language in learning the transitions between
phones. This implicit learning of the speaker’s language or idiolect can be
quite important in improving performance.

While the approach presented by Gauvain incorporated the language
patterns of the speaker implicitly, there has been more recent work
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incorporating the language patterns of the target speaker explicitly.
Doddington [36] demonstrated that frequently occurring bigrams, i.e.
word pairs, contain a great deal of speaker-specific information. His exper-
iments were done on the Switchboard conversational speech corpus
employing the transcriptions of the conversations. The bi-grams that were
found to contain the speaker dependent information were typically con-
tent-free word pairs, such as “it were”, “you bet” and “so forth”. Extracting
speaker information from the speaker’s language, as one might expect,
required much more training than has typically been employed in evalua-
tions. The work of Andrews et al. [37] demonstrated that word-based
speaker information could be captured by phonetic recognition systems.
They showed that significant speaker information was contained in tri-
phone (sequences of three phones) occurrence frequencies. They also dem-
onstrated that useful results could be obtained even if the phonetic
recognizer was not in the language of the target speaker.

The natural extension of the proceeding work was to combine language
information with acoustic information. This extension was done by Andrews
et al. [38] and showed that the two sources of information complement one
another. The exploitation of large amounts of training and test data for
speaker identification purposes was further advanced in a project that was
part of the Johns Hopkins 2002 Speech and Language Workshop [39]. At this
workshop, the use of acoustic, lexical and prosodic information was
explored. The different components were effectively combined to achieve
very good performance for speaker verification on conversational speech.

5.5.3 Models Exploring the Shape of Feature Space

Statistical modeling through the use of the likelihood ratio plays a key role
in SV. Employing likelihood ratios, however, does not necessarily imply the
use of GMMs. Under the assumption that a speaker’s model is character-
ized by a single Gaussian pdf, combined with the assumption that the mean
of the cepstral data is a source of noise due to channel variation, one is led
to alikelihood ratio test for speaker models that score the covariance struc-
ture of the models being compared. Thus this model ignores the fine struc-
ture of the speech, working with the shape that a speaker’s features form in
feature space. In [40], Gish introduced the notion of comparing the shapes
of feature spaces through the scoring of the relative eigenvalues of
covariance matrices. Zilca et al. [41] consider measures of shape and T-
norm scaling of scores in conjunction with channel detection to produce a
near state-of-the-art system working in the cellular phone environment.
This system requires significantly less computation than GMMs.

5.6 Summary

The problem of speaker verification is challenging due to the inherent vari-
ability in both the speech of individuals and the transmission channels.
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Statistical modeling and pattern recognition techniques have been able to
tame some of this variability. Different sources of speaker information are
now being used effectively in combination to improve verification perfor-
mance. While good progress has been made in recent years, the important
problem of verifying the identity of a speaker over a channel different from
that used to obtain the speaker’s training data still offers challenges for the
future.
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Technology Evaluation of
Fingerprint Verification
Algorithms

D. Maio, D. Maltoni, R. Cappelli, ]. L. Wayman and A. K. Jain

6.1 Introduction

In the last few years, many academic and industrial research and develop-
ment groups have created new measurement techniques and new acquisi-
tion sensors for automatic fingerprint recognition. Fingerprint-based
biometric systems represent a significantly growing commercial segment
for pattern recognition applications [9]. Nevertheless, given the lack of
standards, in the past most developers have generally performed only
internal tests over self-collected databases. Few standardized benchmarks
have been available for comparing developments in fingerprint verifica-
tion. This deficiency has unavoidably led to the dissemination of con-
fusing, incomparable and irreproducible results, sometimes embedded in
research papers and sometimes enriching the commercial claims of
marketing brochures.

The only public domain data sets have been the (US) National Institute of
Standards and Technology (NIST) CD-ROMs [21,22] containing thousands
of images scanned from paper cards where fingerprints were impressed by
rolling inked fingers from “nail to nail”. These images differ significantly
from those acquired directly from the finger by “live-scan” optical or solid
state sensors. Although these collections of “rolled” images constitute an
excellent data set for benchmarking forensic AFIS (Automated Fingerprint
Identification Systems) [12] and fingerprint classification development [4,
10], they are not well-suited for testing “online” fingerprint systems [9]
commonly used in access control and civilian AFIS applications (i.e.
driver’slicensing and social service systems).In 1998, NIST released a data-
base containing digital videos of live-scan fingerprint data [23]. As this
database was specifically collected for studying the effects of both finger
rotation and plastic skin distortion on the online acquisition process [5, 6],
it models only certain fingerprint variations and it is not applicable to the
general evaluation of fingerprint verification algorithms.

The aim of the Fingerprint Verification Competition (FVC),organized by
the authors for the first time in 2000, was to attempt to establish a common
basis for better understanding, within both academia and industry, the
state-of-the-art and the future development needs of fingerprint tech-
nology. Analogous efforts have been carried out for other biometric
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technologies (e.g. face [13, 16], and voice [2, 17]) and for other more clas-
sical pattern recognition tasks [1, 8,18, 19]. With the thought that an inter-
national open competition could boost interest and give results larger
visibility, the 15th International Conference on Pattern Recognition (ICPR)
(ICPR 2000) was chosen as the forum for announcing our results. In late
spring 1999, the FVC2000 web site [7] was set up to broadly publicize this
event and we directly invited several companies and research groups
known to us to take part.

The authors believe that the FVC2000 protocol, databases and results
have been useful to all practitioners in the field, not only as a benchmark to
improve their methods, but also for enabling an unbiased evaluation of
algorithms. However, as with all benchmarks, there are limitations to the
general applicability of results. From the beginning, we stated that the com-
petition was not meant as an official performance certification of the par-
ticipant biometric systems, as:

® The databases used in this contest have not been acquired in a real envi-
ronment and according to a formal protocol [2, 17, 20, 24] (also refer to
[25] for an example of performance evaluation on real applications).

® Only parts of the participants’ software are evaluated, and this by using
images from sensors not native to each system. Fingerprint-based bio-
metric systems often implement proprietary solutions to improve
robustness and accuracy (e.g. quality control modules to reject poor
quality fingerprints, visual feedback to help users in optimally posi-
tioning their fingers, use of multiple fingerprint instances to build more
reliable templates etc.), and these contributions are here discounted.

According to the definitions of [17] and [20], FVC2000 should be con-
ceived as a technology evaluation (with some analogies with the FERET [16]
and the NIST Speaker Verification [2] competitions). In fact, quoting [2]:

The goal of a technology evaluation is to compare competing algorithms from
a single technology. Testing of all algorithms is done on a standardized data-
base collected by a “universal” sensor. Nonetheless, performance against this
database will depend upon both the environment and the population in which
it was collected. Consequently, the “three bears” rule might be applied,
attempting to create a database that is neither too difficult nor too easy for the
algorithms to be tested. Although sample or example data may be distributed
for developmental or tuning purposes prior to the test, the actual testing must
be done on data which has not been previously seen by algorithm developers.
Testing is done using “off-line” processing of the data. Because the database is
fixed, results of technology tests are repeatable.

FVC2000 received great attention from both academic and commercial
organizations. On the one hand, it allowed developers to unambiguously
compare their algorithms; on the other, it provided the first overview of the
state of the art in fingerprint recognition and shed some light on finger-
print individuality [28]. Specifically, in FVC2000:
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® Eleven algorithms were submitted (7 academic, 4 commercial).

Four databases were collected (one of them was synthetically generated).

e Synthetic fingerprint generation [3, 29] was validated as an effective
instrument for comparing algorithms and in-house improvement of
methods.

® A CD-ROM containing the four databases and a detailed report was cre-
ated, more than 80 copies of which have been requested by major institu-
tions and companies in the field. The web site [7] has been visited more
than 20,000 times since September 2000.

® Several scientific groups active in the field are currently using FVC2000
databases for their experimentation, allowing them to fairly compare
their approaches to published results.

® Some companies which initially did not participate in the competition
requested to certify their performance on the FVC2000 benchmark after
the competition [7].

The interest aroused by FVC2000, and the encouragement we received,
induced us to set up a second competition. In the organization of FVC2002
[30], we took into account advice we received by experts in the field and by
reviewers of the FVC2000 paper [31]. By January 10,2002 (the deadline for
FVC2002 registration), we had received 48 registrations (19 academic, 29
industrial), far more than our initial expectation. All the registered partici-
pants received the training sets and detailed instructions for the algorithm
submission. By March 1, 2002 (the deadline for submission) we had
received a total of 33 algorithms from 29 participants (four participants
submitted two algorithms). The percentage of withdrawals after registra-
tion decreased from 56% in FVC2000 to 31% in FVC2002. The evaluations
of the 33 submitted algorithms were presented at the 16th ICPR Conference
and are now available online [30].

This chapter is organized as follows. Section 6.2 summarizes the
FVC2000 submission rules and Section 6.3 describes the four databases
used.In Section 6.4 we present the criteria and the procedures used for per-
formance evaluation. Section 6.5 reports the overall performance of the
participating algorithms on each database and concludes with a compar-
ison of the average results. Section 6.6 discusses the FVC2002 databases, the
test protocol and the main differences from FVC2000. Finally,in Section 6.7
we draw some concluding remarks and discuss how we intend to continue
supporting this initiative in the future.

6.2 FV(C2000 Organization and Algorithms
Submission Rules
In FVC2000, the “universal” sensor was actually a collection of four dif-

ferent sensors/technologies to better cover the recent advances in finger-
print sensing techniques and to avoid favoring a particular algorithm
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through the choice of a specific sensor. In fact, of the four databases used in
the test, databases 1 and 2 were collected by using two small-size and low-
cost sensors (optical and capacitive, respectively). Database 3 was collected
by using a higher quality (large area) optical sensor. Images in database 4
were synthetically generated by using the approach described in [3]. Each
of the four databases contained 880 fingerprints from 110 different fingers,
collected using the “three bears rule” (not too easy, not too hard) [20],
based on our prior subjective experiences with fingerprint recognition
algorithms. In particular, on the one hand, we discarded fingerprint images
we considered completely intractable even for a human expert, while on the
other hand we avoided collecting perfect fingerprints which would be very
easy for a matching algorithm. Some internally developed algorithms
helped us in accomplishing this task. Each database was splitinto a seques-
tered “test” set of 800 images (set A) and an open “training” set of 80 images
(set B), made available to participants for algorithm tuning. The samples in
each set B were chosen to be as representative as possible of the variations
and difficulties in the corresponding set A. To this end, fingerprints were
automatically sorted by quality as in [15] and samples covering the whole
range of quality were included in set B. A final visual inspection of the
obtained data sets was carried out to ensure that “dry”, “wet”, “scratched”,
“distorted” and “markedly rotated” fingerprints were also adequately
represented.

In March 2000, after several months of active promotion, we had 25 vol-
unteering participants (about 50% from academia and 50% from industry),
and by the end of April 2000, the training sets were released to the
participants.

After the submission deadline (June 2000) for the executables, the
number of participants decreased to 11 (most of the initially registered
companies withdrew). Nonetheless, the number of participants (see Table
6.1) was more than we had anticipated, so we started working on the sub-
mitted executables to complete their evaluation by August 2000.

Once all the executables were submitted, feedback was sent to the partici-
pants by providing them the results of their algorithms on training set B
(the same data set they had previously been given) to allow them to verify
that neither run-time problems nor hardware-dependent misbehaviors
were occurring on our side.

Each participant was required to submit two executables in the form
of a “win32 console application”. According to the given specification,
the executables take input from command-line arguments and append
the output to a text file. The input includes a database-specific configura-
tion file. Participants were allowed to submit four distinct configuration
files - CF1.cfg,CF2.cfg,CF3.cfg and CF4.cfg (one for each database) -
in order to adjust the algorithm’s internal parameters according to each
specific database. Configuration files are text files or binary files and their
input is the responsibility of the participant’s code. Configuration files can
also contain pre-computed data to save time during enrollment and
matching.
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Table 6.1 List of participants: a four digit ID was assigned to each algorithm. (Sagem SA sub-
mitted two different algorithms.)

ID Organization Type

CETP CEFET-PR / Antheus Technologia Ltda (Brasil) Academic

CSPN Centre for Signal Processing, Nanyang Technological Academic
University (Singapore)

CWAI Centre for Wavelets, Approximation and Information Academic

Processing, Department of Mathematics, National
University of Singapore (Singapore)

DITI Ditto Information & Technology Inc. (Korea) Commercial
FPIN FingerPin AG (Switzerland) Commercial
KRDL Kent Ridge Digital Labs (Singapore) Academic
NCMI Natural Sciences and Mathematics, Institute of Academic
Informatics (Macedonia)
SAG1 SAGEM SA (France) Commercial
SAG2 SAGEM SA (France) Commercial
UINH Inha University (Korea) Academic
UTWE University of Twente, Electical Engineering (Netherlands) Academic

® The first executable (ENROLL_XXXX) enrolls a fingerprint image and pro-
duces a template file; the command-line syntax is:

ENROLL_XXXX imagefile templatefile configfile outputfile

where

XXXX
imagefile
templatefile
configfile
outputfile

is the participant id

is the input TIF image pathname

is the output template pathname

is the configuration file pathname

is the output text file where a 1og string (of the form
imagefile templatefile result) mustbe appended;
result is “OK” if the enrollment can be performed or
“FAIL” if the input image cannot be processed by the
algorithm.

® The second executable (MATCH XXXX) matches a fingerprint image
against a fingerprint template and produces a similarity score; the com-
mand-line syntax is:

MATCH_XXXX imagefile templatefile configfile outputfile

where:

XXXX
imagefile
templatefile
configfile
outputfile

is the participant id

is the input TIF image pathname

is the input template pathname

is the configuration file pathname

is the output text file where a 1Tog string (of the form
imagefile templatefile result similarity) must
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beappended; resultis “OK”if the matching can be per-
formed or “FAIL” if the matching cannot be executed by
the algorithm; similarity is a floating-point value
ranging from 0 to 1 which indicates the similarity
between the template and the fingerprint: 0 means no
similarity, 1 maximum similarity.

Two C-language skeletons for ENROLL_XXXX and MATCH_XXXX were made
available online to reduce the participants’ implementation efforts. These
source files perform all the necessary I/O (including TIF image loading).

We also premised that, for practical testing reasons, we should limit the
maximum response time of the algorithms: 15 seconds for each enrollment,
5 seconds for each matching. The test was executed on machines with
Pentium III processors running at 450 MHz (under Windows NT 4.0 and
Linux RedHat 6.1).

6.3 Databases

Four different databases (hereinafter referred to as DB1, DB2, DB3 and
DB4) were collected by using the following sensors/technologies [11] (Fig.
6.1):

DB1: optical sensor “Secure Desktop Scanner” by KeyTronic

DB2: capacitive sensor “TouchChip” by ST Microelectronics

DB3: optical sensor “DFR-90" by Identicator Technology

DB4: synthetically generated based on the method SFinGe proposed in
[3].

Each database is 110 fingers wide (w) and 8 impressions per finger deep
(d) (880 fingerprints in all); fingers numbered from 101 to 110 (set B) were
made available to the participants to allow parameter tuning before the
submission of the algorithms; the benchmark is then constituted by fingers
numbered from 1 to 100 (set A). For a system evaluation, the size of the

Figure 6.1 Fingerprint database generation. From left to right: the three sensors used for col-
lecting DB1, DB2, DB3, respectively, and a snapshot of the tool which generated synthetic finger-
printsin DB4.
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Table 6.2 The four FVC2000 databases.

Sensor type Image size SetA(wxd) SetB(wxd) Resolution
DB1  Optical sensor 300 x 300 100 x 8 10x 8 500 dpi
DB2  Capacitive 256 x 364 100 x 8 10x8 500 dpi
sensor
DB3  Optical sensor 448 x 478 100 x 8 10%x8 500 dpi
DB4  SFinGev 2.1 240 x 320 100 x 8 10x 8 About 500 dpi’

TIn the artificial generation, the resolution is controlled by the average ridge-line inter-
distance; this input was estimated from a real 500 dpi fingerprint database.

above four databases is certainly not sufficient to estimate the performance
with high confidence. However, in a technology evaluation (like FVC2000)
the aim is to capture the variability and the difficulties of the problem at
hand and to investigate how the different algorithms deal with them. For
this purpose, the sizes of our database are adequate.

Table 6.2 summarizes the global features of the four databases, and
Figure 6.2 shows a sample image from each of them.

It is worth emphasizing that the protocol of providing more than one
database is not aimed at comparing different acquisition technologies and
devices. The results obtained by the algorithms on the different databases
cannot be conceived as a quality measure of the corresponding sensors,
since the acquisition conditions and the volunteer crew of each database
are different.

To summarize, DB1 and DB2 have the following features:

® The fingerprints are mainly from 20 to 30 year-old students (about 50%
male).

® Up to four fingers were collected for each volunteer (forefinger and
middle finger of both the hands).

® The images were taken from untrained people in two different sessions
and no efforts were made to ensure minimum acquisition quality.

Figure 6.2 Sample images taken from DB1, DB2, DB3 and DB4. In order to show the different
image sizes of each database, the four images are displayed at the same scale factor.
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All the images from the same individual were acquired by interleaving
the acquisition of the different fingers (e.g. first sample of left forefinger,
first sample of right forefinger, first sample of left middle, first sample of
right middle, second sample of the left forefinger, ...).

The presence of the fingerprint cores and deltas is not guaranteed, since
no attention was paid to checking the correct finger position on the
Sensor.

The sensor platens were not systematically cleaned (as usually suggested
by the vendors).

The acquired fingerprints were manually analyzed to ensure that the
maximum rotation is approximately in the range [-15° 15°] and that
each pair of impressions of the same finger has a non-null overlapping
area.

Figures 6.3-6.6 show some images from DB1 and DB2.

The database DB3 was collected as follows:

The fingerprints are from 19 volunteers between the ages of 5 and 73
(55% male).

One-third of the volunteers were over 55 years of age.

One-third of the volunteers were under 18 years of age.

One-sixth of the volunteers were under 7 years of age (children’s finger-
prints constitute an interesting case study, since the usable image area is
small and the ridge-line density is high).

Two images of up to six fingers (thumb, fore and middle on left and right
hands) were taken without interleaving from each volunteer at each ses-
sion and no efforts were made to ensure a minimum acquisition quality.
Each volunteer was seen at four sessions, with no more than two sessions
on any single day.

The time gap between the first and last sessions was at least three days
and as long as 3 months, depending upon volunteer.

Figure 6.3 Sample images from DB1; each row shows different impressions of the same finger.
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Figure 6.4 Images from DB1; all the samples are from different fingers and are roughly ordered
by quality (top left: high quality; bottom right: low quality).

2

e

Figure 6.5 Sample images from DB2; each row shows different impressions of the same finger.
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Figure 6.6 Images from DB2;all the samples are from different fingers and are roughly ordered
by quality (top left: high quality; bottom right: low quality).

® The sensor plate was systematically cleaned between image acquisitions.

® At one session with each volunteer, fingers were cleaned with rubbing
alcohol and dried.

® Some part of the core was apparent in each image, but care was taken to
avoid a complete overlap between consecutive images taken during a
single session.

® The acquired fingerprints were manually analyzed to ensure that the
maximum rotation is approximately in the range [-15°, 15°] and that
each pair of impressions of the same finger has a non-null overlapping
area.

Figures 6.7 and 6.8 show some sample images taken from DB3.

Collection of DB4 requires some explanation. In general, the use of artifi-
cial images for testing biometric systems is not considered to be the “best
practice”[20]. Although this may be the case for performance evaluation in
real applications, we believe that in a technology evaluation event such as
FVC2000, the use of synthetic images has three main advantages:
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Figure 6.8 Images from DB3;all the samples are from different fingers and are roughly ordered
by quality (top left: high quality; bottom right: low quality).
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® Jtsuppliesimages which are native to none of the participant algorithms,
thus providing a fair comparison.

e Synthetic fingerprint databases can be created at very low cost.
Acquiring a large number of fingerprints for testing purposes may be
problematic due to the great amount of time and resources required and
also to the privacy legislation which in some countries prohibits the dif-
fusion of such personal information. Furthermore, once a database has
been “used”, its utility is limited since, for successive testing of algo-
rithms, a new unknown database should be used.

® Jtis possible to adjust the database difficulty by tuning different kinds of
perturbations (e.g. maximum amount of rotation and translation, and
the amount of skin distortion).

If the generated artificial images were not a suitable simulation of real
fingerprint patterns, the comparisons on the synthetic database would be
misleading; furthermore, in order to improve the performance, ad hoc
algorithms could be designed/tuned according to the same assumptions
that model the synthetic generation. However, the presence of three real
databases in FVC2000 provides a natural way to check the validity of the
results on DB4.

The parameters of the synthetic generator were tuned to emulate a low-
cost sensor with a small acquisition area; the maximum rotation and dis-
placement and skin distortion are adjusted to roughly reproduce the per-
turbations in the three previous databases. Figures 6.9 and 6.10 show some
sample images taken from DB4.

Figure 6.9 Sample images from DB4; each row shows different impressions of the same finger.
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Figure 6.10 Images from DB4;all the samples are from different fingers and are roughly ordered
by quality (top left: high quality; bottom right: low quality).

6.4 Performance Evaluation

For each database, we will refer to the jth fingerprint image of the ith finger
as Fj,i=1..100,j = 1..8 and to the corresponding template (computed from
Fl]) as Tij-

For each database and for each algorithm:

® The templates Tj;, i = 1..100, j = 1..7 are computed from the corre-
sponding F;; and stored on a disk; one of the following three kinds of
rejection can happen for each image F;:

1. F (Fail): the algorithm declares that it cannot enroll the fingerprint
image.

2. T (Timeout): the enrollment exceeds the maximum allowed time (15
seconds).

3. C (Crash): the algorithm crashes during fingerprint processing.

The three types of rejection, considered as “failure to enroll”, are
added and stored in REJgNRrOLL-
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® Each fingerprint template T;; is matched against the fingerprint images
Fik (j< k <8) and the corresponding Genuine Matching Scores gms;ji are

stored!. The number of matches (denoted as NGRA - Number of Gen-
uine Recognition Attempts) is ((8 X 7)/2) x 100 =2,800 in case REJgnroLL
=0.The failed, timeout (5 seconds) and crash rejections are accumulated
into REJNGRra; NO gms;j is stored in this case.

® Each fingerprint template T;;, i = 1..100 is matched against the first fin-
gerprint image from different fingers Fy; (i < k <100) and the corre-
sponding Impostor Matching Scores ims;, are stored. The number of
matches (denoted as NIRA - Number of Impostor Recognition
Attempts) is ((100 x 99)/2) = 4, 950 in case REJgnrorL = 0. The failed,
timeout (5 seconds) and crash rejections are accumulated into RE]nira;
no ims; is stored in this case.

® The genuine score distribution and the impostor score distribution are
computed (actually, the term “distribution” denotes a histogram) and
graphically reported to show how the algorithm “separates” the two
classes. In fingerprint verification, higher scores are associated with
more closely matching images.

® The FMR(t) (False Match Rate) and FNMR(¢) (False Non-Match Rate)
curves are computed from the above distributions for f ranging from 0 to
192, Given a threshold ¢, FMR(t) denotes the percentage of ims;; > ¢, and
FNMR(#) denotes the percentage of gms;jx < t. Actually, since FMR and
FNMR are used in the contest to compare the performance of different
algorithms, FMR and FNMR are “corrected” to keep into account rejec-
tions stored in REJyra and REJygra:

card{ims;; |ims; >t
FMR(f) = { zkl ik } ’
NIRA

card{gms j |gms;jx <t} +REJnGrA
NGRA

FNMR(t) =

where card denotes the cardinality of a given set. This correction
assumes that a failure to match is always treated by the system as a “non-
match” (matching score < 0).

1 If gis matched with k, the symmetric match (i.e. h against g) is not executed.

2 FMR and FNMR are often confused with FAR (False Acceptance Rate) and FRR
(False Rejection Rate) respectively, but the FAR/FRR notation is misleading in
some applications. For example, in a welfare benefits system, which uses fingerprint
identification to prevent multiple payments under false identity, the system “falsely
accepts” an applicantif the fingerprint is “falsely rejected” (not matched to the print
of the same finger previously stored in the database); similarly, a “false acceptance”
causes a “false rejection”. Therefore, to avoid this confusion, we distinguish the
matching errors made by the algorithm from errors made in the final “accept/
reject” decision given the user.
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Figure 6.11 An example of FMR/FNMR curves, where the points corresponding to EER, ZeroFMR
and ZeroFNMR are highlighted.

® A ROC (Receiving Operating Curve) is obtained, where FNMR is plotted
as a function of FMR; the curve is drawn in log-log scales for better
comprehension.

® The Equal Error Rate EER is computed as the point where FNMR(¢t) =
FMR(¢) (see Figure 6.11); in practice, the matching score distributions
(histograms) are not continuous and a crossover point might not exist.In
this case, we report the interval [EER )4y, EERpjgp]. An operational defini-
tion of EER is given in Appendix A.

e ZeroFMR is defined as the lowest FNMR at which no False Matches occur
and ZeroFNMR is defined as the lowest FMR at which no False Non-
Matches occur (Figure 6.11):

ZeroFMR(t) = min{FNMR(¢)[FMR(¢) = 0}
t

ZeroFNMR () = min{FMR () FNMR((¢) = 0}
t

Both ZeroFMR and ZeroFNMR may not exist; in such a case we assign to
them the value 1.

® The average enroll time is calculated as the average CPU time for a single
enrollment operation, and average match time as the average CPU time
for a single match operation between a template and a test image.

6.5 Results

This section reports the performance of the tested algorithms on each of
the four databases (Tables 6.3-6.6) and the average results over the four
databases (Table 6.7). Figure 6.12 shows the ROC for DB3, which proved to
be the most difficult data set. The notation introduced in Section 6.4 is used
in both the graphics and tables, with the only exception of reporting
REJgNroLL @5 @ percentage value and to collapse both REJygra and REJnira
into a single value RE]parch:
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Table 6.3 Algorithm performance over DB1 sorted by EER.

Algorithm EER (%) REJgngor REJmatcH  Average enroll Average match

(%) (%) time (s) time (s)
SAGT 0.67 0.00 0.00 2.48 0.96
SAG2 1.17 0.00 0.00 0.88 0.88
CETP 5.06 0.00 0.00 0.81 0.89
CWAI 7.06 3.71 3.90 0.22 0.32
CSPN 7.60 0.00 0.00 0.17 0.17
UTWE 7.98 0.00 0.00 10.40 2.10
KRDL 10.66 6.43 6.59 1.00 1.06
FPIN 13.46 0.00 0.00 0.83 0.87
UINH 21.02 1.71 5.08 0.53 0.56
DITI 23.63 0.00 0.00 0.65 0.72
NCMI 49.11 0.00 0.12 1.13 1.34

Table 6.4 Algorithm performance over DB2 sorted by EER.

Algorithm EER(%) REJgnpor  REJumatchH  Average enroll  Average match

(%) (%) time (s) time (s)
SAGT 0.61 0.00 0.00 2.63 1.03
SAG2 0.82 0.00 0.00 0.93 0.93
CSPN 2.75 0.00 0.00 0.17 0.17
CWAI 3.01 1.29 1.29 0.23 0.30
CETP 4,63 0.00 0.09 0.85 0.98
KRDL 8.83 3.29 441 1.16 2.88
UTWE 10.65 0.00 0.00 10.42 2.12
FPIN 11.14 0.00 0.00 1.16 1.24
DITI 13.83 0.00 0.00 1.21 1.28
UINH 15.22 0.86 4.08 0.60 0.65
NCMI 46.15 0.00 0.00 1.28 1.57

NIRA -REJ yira +NGRA -REJ NGrA
NIRA +NGRA

REJmaTCH =

For a correct interpretation of the results, EER alone is not a sufficient
metric; REJgnrorr should be also taken into account.

For each algorithm, detailed results (including genuine and impostor
distributions, FMR and FNMR curves, NGRA, NIRA, ...) are reported in
[14]. For each algorithm, detailed results (including genuine and impostor
distributions, FMR and FNMR curves, NGRA, NIRA, ...) are reported in
Appendix B.

Most of the algorithms submitted to the competition performed well, if
we take into account the difficulty of adapting a given algorithm to new
types of images. In particular, algorithms SAG1 and SAG2 showed the best
accuracy and CSPN exhibited a good trade-off between accuracy and
efficiency.
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Figure6.12 ROCcurveson DB3.Each pointdenotes a pair (FMR(t),FNMR(t)) for a given value of t.

Table 6.5 Algorithm performance over DB3 sorted by EER.

Algorithm EER (%) REJgnrowr  REJmatcn Average enroll  Average match
(%) (%) time (s) time (s)
SAG1 3.64 0.00 0.00 5.70 2.13
SAG2 4.01 0.00 0.00 1.94 1.94
CSPN 5.36 0.57 1.24 0.35 0.36
CETP 8.29 0.00 0.00 1.49 1.66
CWAI 11.94 12.86 8.00 0.46 0.57
KRDL 12.20 6.86 5.12 1.48 1.60
UINH 16.32 10.29 7.64 1.28 1.36
UTWE 17.73 0.00 0.00 10.44 231
DITI 22.63 0.00 0.00 2.59 2.67
FPIN 23.18 0.00 0.00 2.13 2.19
NCMI 47.43 0.00 0.01 2.25 2.75

Table 6.7 highlights a significant gap in the performance of the different
algorithms and it would be extremely interesting to understand the reasons
for such differences. For this purpose, after the presentation of the results,
we asked the participants to provide some technical details about their
methods, but only a few of them responded (the responses can be found at
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Table 6.6 Algorithm performance over DB4 sorted by EER.

Algorithm EER(%) REJgnpor  REJumatch  Average enroll  Average match

(%) (%) time (s) time (s)
SAGT 1.99 0.00 0.00 1.90 0.77
SAG2 3.11 0.00 0.00 0.69 0.69
CSPN 5.04 0.00 0.00 0.1 0.11
CWAI 6.30 0.00 0.00 0.16 0.20
CETP 7.29 0.00 0.00 0.65 0.72
KRDL 12.08 10.86 10.24 0.70 0.79
FPIN 16.00 0.00 0.00 0.77 0.80
DITI 23.80 0.00 0.00 0.52 0.60
UTWE 24.59 0.00 0.00 10.42 417
UINH 24.77 2.14 4.28 0.42 0.45
NCMI 48.67 0.00 0.25 1.08 1.19

Table 6.7 Average performance over the four databases sorted by average EER.

Algorithm Average Average Average Average enroll Average match
EER (%) REJgnrorr  REJmatch  time (s) time (s)
(%) (%)
SAG1 1.73 0.00 0.00 3.18 1.22
SAG2 2.28 0.00 0.00 1.1 1.1
CSPN 5.19 0.14 0.31 0.20 0.20
CETP 6.32 0.00 0.02 0.95 1.06
CWAI 7.08 4.46 3.14 0.27 0.35
KRDL 10.94 6.86 6.52 1.08 1.58
UTWE 15.24 0.00 0.00 10.42 2.67
FPIN 15.94 0.00 0.00 1.22 1.27
UINH 19.33 3.75 5.23 0.71 0.76
DITI 20.97 0.00 0.00 1.24 1.32
NCMI 47.84 0.00 0.09 1.44 1.71

the FVC2000 web site [7]). In any case, on the basis of the participant
responses and on what we learned from this experience, we can make the
following observations:

® A coarse analysis of the errors on genuine attempts showed that most of
the errors were made by the algorithms on about 15-20% poor-quality
fingerprints in each database. In other words, we could claim that a
“20-80 rule”is valid: that is, 20% of the database is responsible for 80% of
the errors.

® The most accurate algorithm (SAGI1) takes a lot of time for enrollment
(3.18 s with respect to a median enrollment time of 1.08 s). This suggests
that accurate image enhancement and feature extraction are really
important for improving the matching accuracy. Furthermore, feature
extraction seems to perform asymmetrically, since the average matching
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time (which also includes the feature extraction time for the test image)
is substantially lower than a single enrollment time.

® The fastest algorithm (Cspn) extracts minutiae by an adaptive tracing of
the gray-level ridges, without a priori binarization and thinning (which
are time-consuming tasks) [15, 26] and exploits local minutiae arrange-
ment to speed up the initial steps of minutiae matching [27].

Databases DB1 and DB2 proved to be “easier” than DB3, even though the
sensor used for DB3 is of higher quality. This means that the acquisition
conditions and the volunteer population can have a stronger impact on
performance than sensor quality.

The synthetically generated database (DB4) was demonstrated to be ade-
quate for FVC2000 purposes: in particular, from Tables 6.3-6.6, it is evident
that the algorithm ranking on DB4 is quite similar to the other databases,
proving that no algorithm was favored or penalized by the synthetic
images. In particular, if an algorithm performs well on real fingerprints,
then it also performs well on synthetic fingerprints, and vice versa. The
visual analysis of impostor and genuine distributions (see [14]) definitely
supports this claim, since no significant differences are seen between the
DB4 graphics and the others.

6.6 Organization of FVC2002

At the end of 2001, when the FVC2002 web site was created [30], we exten-
sively publicized this next competition. To increase the number of compa-
nies participating, and therefore to provide a more complete panorama of
the state of the art, we decided to allow the participants to remain anony-
mous. In FVC2002, participants could decide not to publish the name of
their organization in case their results were not as they expected.

The FVC2002 announcement clearly stated that,analogously to FVC2000,
FVC2002 is not to be viewed as an official certification of fingerprint-based
biometric systems, but simply as a technology evaluation [30], where algo-
rithms compliant with a predefined protocol are evaluated on common
databases. Neither hardware components nor proprietary modules outside
the FVC2002 protocol are tested.

Four new databases were collected and a representative subset of each
database was made available to the participants to let them tune their algo-
rithms according to the image size and the variability of the fingerprints in
the databases. Four databases constituted the FVC2002 benchmark. Three
different scanners and the SFinGe synthetic generator were used to collect
fingerprints (see Table 6.8 and Figure 6.13). Figure 6.14 shows an image for
each database, at the same scale factor.

At the end of the data collection, we had collected for each database a
total of 120 fingers and 12 impressions per finger (1440 impressions) using
30 volunteers. The size of each database used in the FVC2002 test, however,
was established as 110 fingers, 8 impressions per finger (880 impressions)
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Table 6.8 Scanners/technologies used for the collection of FVC2002 databases.

Technology Scanner Image size - resolution
DB1  Optical Identix TouchView Il 388 x 374 - 500 dpi
DB2  Optical Biometrika FX2000 296 x 560 - 569 dpi
DB3  Capacitive Precise Biometrics 100 SC 300 x 300 - 500 dpi
DB4  Synthetic SFinGE v2.51 288 x 384 - 500 dpi
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Figure 6.13 From left to right: the three sensors used for collecting DB1, DB2 and DB3, respec-
tively,and a snapshot of the tool which generated synthetic fingerprints in DB4.

Figure 6.14 One fingerprintimage from each database of FVC2002.

(Figure 6.15). Collecting some additional data gave us a margin in case of
collection errors,and also allowed us to choose systematically from the col-
lected impressions those to include in the test databases. In the FVC2002
testing protocol, new performance indicators, e.g. FMR100 and FMR1000,
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DB1

DB2

DB3

DB4

Figure 6.15 Sampleimages from the four databases;for each database, the first row shows eight
impressions of the same finger, the second row reports samples from different fingers, roughly
ordered by quality (left: high quality; right: low quality).

which are the values of FNMR for FMR = 1/100 and 1/1000 respectively,
were added to those already used in FVC2000. These data are useful to char-
acterize the accuracy of fingerprint-based systems, which are often oper-
ated far from the EER point, by using thresholds which reduce FMR at the
cost of high FNMR. Failure to enroll errors (FTE) were incorporated into
the computation of the false non-match rate (FNMR) and false match rate
(FMR) to make the results of the different algorithms directly comparable.
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In particular, we clarified from the beginning that each FTE error produces
a “ghost” template which does not match (matching score 0) with the
remaining fingerprints, thus increasing the FNMR. This approach is
consistent with that used in [32].

Ranking the algorithms according to EER (as in FVC2000) may be some-
times misleading. On the other hand, mixing heterogeneous indicators into
aunique goodness index is difficult and arbitrary. Therefore, we decided to
summarize the results of FVC2002 in a sort of Olympic medal table where
three medals (gold, silver and bronze) are assigned to the best three algo-
rithms for each indicator over each database.

The evaluation of the 33 algorithms submitted to the Second Interna-
tional Fingerprint Verification Competition (FVC2002) is available at [30].
A CD-ROM containing the four databases is available to the research com-
munity. At the time of this writing, a 2004 version of FVC is being planned,
again to have four separate databases: two of these databases will be col-
lected using an optical scanner, one using a thermal swept scanner,and one
again synthetically generated. Results will again be posted online [33].

6.7 Conclusions

Once again we would like to remark that the results reported here do not
necessarily reflect the performance that the participating algorithms
would achieve in a real environment or when embedded into a complete
biometric system. In any event, we believe that FVC competition results:

® Provide a useful overview of the state of the art in this field.

® Allow researchers and companies to test their algorithms over common
databases collected using state of the art sensors.

® Provide guidance to the participants for improving their algorithms.

In future, we intend to continue supporting this initiative as follows:

® The existing FVC web sites will be maintained to diffuse FVC results, and
to promote FVC testing protocol as a standard for technological
evaluations.

® Companies and academic research groups will be allowed to test new
algorithms or improved versions of existing algorithms on the FVC
benchmark databases and to add their results to the FVC web site. New
entries will be kept isolated from the original entries, since hereafter the
full databases are known in advance, which could allow algorithm tuning
to give an unfair advantage to new participants.

® Generating synthetic fingerprint databases for future evaluations will be
further investigated.
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Appendix A

An operational procedure for computing EER (interval), given a finite
number of genuine and impostor matching scores, is reported in the fol-
lowing. Let

t; = max {t|FNMR(t) <FMR(t)}
re{ gms;jk }{ imsji }
and
ty) = min {t|FNMR(¢) 2 FMR(t)}

te{ gmsijk ho{ imsig }
The EER interval is defined as:

[EER 10w ,EER high 1=
[FNMR(t;),EMR(¢;)] if FNMR(t;)+FMR(t;) <EMR(t, ) +FNMR(t,)
[FMR(t,),FNMR(t,)] otherwise

and EER is estimated as (EER|oy + EERpjgp) /2 (see Figure 6.16).
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Figure6.16 ComputingtheEERinterval.Atthe top anexampleisgiven where an EER point exists.

Below, two cases are shown where an EER point does not exist and the corresponding intervals are
highlighted.

Appendix B

The following pages show the results for each algorithm.
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Methods for Assessing
Progress in Face Recognition

P. Jonathon Phillips, Duane Blackburn, Patrick Grother, Elaine
Newton and J. Mike Bone

7.1 Introduction

Evaluations measure the performance and effectiveness of biometrics. His-
torically, detailed evaluations have been limited to face, fingerprint and
speaker recognition. Biometrics, along with character recognition and
speech recognition, is one of the few areas in pattern recognition, signal
processing and computer vision that have a history of evaluations. Evalua-
tions are effective in these disciplines because performance metrics are
easily defined. Regular evaluations have been instrumental in advancing
the capabilities of automatic face recognition algorithms.

Evaluations are one of two methods for measuring progress in face rec-
ognition that will be addressed in this chapter. The other method is meta-
analysis. Meta-analysis is a statistical technique for examining experi-
mental results across multiple papers in a field - for example, face recogni-
tion papers published in the scientific literature. From an in-depth analysis
of the results from multiple papers, an assessment of progress can be made.
Both methods are complementary, with each having a role in measuring
progress. Together, evaluations and meta-analysis present a more compre-
hensive assessment of biometric performance. These methods are also
relevant to all areas of biometrics.

A theory and philosophy for evaluation of biometrics is presented in
Phillips et al. [1], where evaluations are divided into three categories: tech-
nology, scenario and operational. We will restrict our discussion to tech-
nology evaluations (because there exist a number of well-defined
technology evaluations) and accepted protocols for performing them.

The gold standard in technology evaluations is an ‘independently
administered evaluation’. Independent evaluations are the gold standard
because they produce unbiased assessments. In a technology evaluation,
face recognition systems are evaluated on the same images and under the
same conditions. This allows for the direct comparison among evaluated
systems, assessments of individual systems’ strengths and weaknesses,and
insight into the overall state of the systems’ field. Examples of gold stan-
dard evaluations are FERET [2, 3], Face Recognition Vendor Test (FRVT)
2000 [35], Fingerprint Verification Competition (FVC) 2000 and 2002
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[44-46],and NIST Speaker Recognition Competitions [47,48]. Key proper-
ties of an independent evaluation are: (1) the system developers and testers
are separate and independent groups; (2) the systems are evaluated on
sequestered data; and (3) all systems are evaluated using the same data.

We examine evaluations by looking at the three FERET evaluations and
the Face Recognition Vendor Test (FRVT) 2000. Our analysis shows that peri-
odic evaluations have made significant contributions to advancing the capa-
bilities of face recognition technology over the past decade. In addition, we
identify three key areas for future research in automatic face recognition.

An evaluation provides an assessment of the state of the art of a given
field at the time of the evaluation. By its nature, an evaluation measures the
performance of mature systems. This is because evaluations are normally
conducted under competitive conditions where participants have opti-
mized their systems for the specific evaluation. In order to gain a compre-
hensive assessment of face recognition, one also needs to understand
performance trends over time, and what potential breakthroughs are on
the horizon. This is found through meta-analysis.

Meta-analysis is a quantitative method for analyzing results from multiple
papers on the same subject [28,29]. Meta-analysis can be performed to con-
solidate a group of experimental results or to gain deeper insight into meth-
odological techniques in a field. Meta-analysis has been used extensively in
medicine, psychology and the social sciences. Its effectiveness in face recog-
nition has also been demonstrated in Phillips and Newton [39], which pres-
ents the first meta-analysis in face recognition, biometrics and computer
vision. This meta-analysis examines two key issues necessary for the
advancement of face recognition. First, is the research community working
on the hard issues in the field (e.g. those identified in relevant studies and
evaluations such as the FERET evaluations and FRVT 2000)? Second, are the
algorithms being developed by the research community significant break-
throughs in face recognition, or are they marginal improvements? If the
research community expects to make progress and contribute to advancing
face recognition, the answers to both of these questions must be yes.

7.2 Face Recognition Evaluations

Independent evaluations have been a critical component of face recognition
technology development for the last decade. They have simultaneously mea-
sured and driven progress in the field. Independent evaluations allow for an
unbiased assessment of the current state of the art, identify the most promising
approaches, assess the strengths and weaknesses of both individual approaches
and the field as a whole, and identify promising research directions.

7.2.1 Introduction to FERET and FRVT 2000

The three FERET evaluations were the first of their kind conducted in the
face recognition community, and proved to be one of the key catalysts in
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advancing face recognition from its infancy to prototype systems. The
FERET evaluations were administered between 1994 and 1996, with the last
FERET evaluation measuring the performance of prototype laboratory
systems. Between the last FERET evaluation and the beginning of 2000, face
recognition matured from prototype laboratory systems to commercially
available systems. The Face Recognition Vendor Test (FRVT) 2000 mea-
sured the capabilities of these commercial systems as well as progress in
the field.

The FERET evaluations and FRVT 2000 were technology evaluations.
Technology evaluations measure performance of core face recognition
technology, and provide an assessment of the state of the art. Technology
evaluations do not directly measure the performance of biometrics sys-
tems for general or specific applications. Measuring performance for spe-
cific applications is the province of scenario and operational evaluations.
Scenario and operational evaluations test biometric systems in field condi-
tions and may take into consideration such factors as the sensors, system
integration, human-computer interfaces, operational considerations, and
the business model associated with implementing a biometric solution.
Technology evaluations provide a more general guide as to which applica-
tions a biometric is best suited. A technology evaluation identifies bio-
metric applications that are ready for scenario and operational
evaluations,and the systems most likely to succeed for an application. For a
detailed discussion of the properties and roles of technology, scenario, and
operational evaluations, see Phillips et al. [1].

Technology evaluations, such as the FERET evaluations and FRVT 2000,
test face recognition algorithms using digital images. The images are
acquired prior to the evaluation and sequestered. Sequestering the images
enables the algorithms to be tested on images that they have not seen before.
This means that the evaluations are repeatable and that all algorithms are
tested with the same sets of images. This makes it possible to directly com-
pare performance among the algorithms and the systems that are tested.

The FERET evaluations were one component of a much larger FERET
program. The other two components were the FERET database collection
effort and FERET algorithm development effort. The goal of the FERET
program was to develop and advance face recognition from its infancy in
1993 to a viable technology [42]. To support technology development and
evaluation, the FERET database of still facial images was collected. In order
to measure progress, a series of three FERET evaluations were adminis-
tered. The three FERET evaluations took place in August 1994, March 1995
and September 1996.

At the start of the FERET program, face recognition was in its infancy
and it was an open question whether or not automatic face recognition was
a viable technology. In addition, prior to the first FERET evaluation, there
were no independent assessments of the performance of face recognition
algorithms. The goals of the FERET evaluations were to show that auto-
matic face recognition was viable, measure progress, identify promising
approaches and determine whether key milestones were met in the FERET
program.
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Table 7.1 Groups that participated in the FERET evaluations. Participants are broken out by each
evaluation. In the September 1996 evaluation, two partially automatic systems were tested from
both MIT and UMD. To provide benchmark performance scores, the September 1996 evaluation
organizers implemented a baseline PCA face recognition algorithm.

Evaluation
Version of test Group August 1994 March 1995 September 1996
Fully automatic MIT [16, 17] v v v
Rockefeller [54] v
Rutgers [36] v
TASC [7] v
usc 18] v v v
Partially automatic  Baseline [2] v
Excalibur v
MIT [16, 17] (2)
MSU [27] v
Rutgers [36] v
UMD [27] (2)
UsC 18] v

The August 1994 evaluation established the first independent assess-
ment of automatic face recognition performance [3]. It demonstrated that
face recognition had the potential to become a viable technology and pro-
vided a baseline performance standard for face recognition algorithms.
Subsequent FERET evaluations confirmed that automatic face recognition
was a viable technology. The August 1994 evaluation measured the
performance of four algorithms.

Table 7.1 lists the participants in the FERET evaluations. Baseline perfor-
mance was established on a gallery of 316 individuals. The evaluation mea-
sured the performance of fully automatic algorithms. Fully automatic
algorithms can automatically locate, normalize, and identify faces from a
database. A partially automatic algorithm is given the coordinates of both
eyes. Thus, partially automatic algorithms do not need to locate the face in
animage. The gallery contains the set of known individuals. An image of an
unknown face presented to the algorithm is called a probe, and the collec-
tion of probes is called the probe set. Since there is only one face in an
image, sometimes “probe” refers to the identity of the person in a probe
image.

The second FERET evaluation (March 1995) measured progress since the
August 1994 evaluation and tested algorithms on larger galleries [3]. The
March 1995 evaluation consisted of a single test with a gallery of 817 known
individuals. Like the August 1994 evaluation, the March 1995 evaluation
tested fully automatic algorithms. The primary emphasis of this test was to
measure performance using probe sets that contained duplicate probes on
a gallery larger than the galleries in the August 1994 test. A duplicate probe
is usually an image of a person whose corresponding gallery image was
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taken on a different day (technically, the probe and gallery images were
from different image sets; see the description of the FERET database
above).

The third and final FERET evaluation was conducted in September 1996
[2]. This evaluation measured the performance of prototype systems. The
September 1996 evaluation tested both fully and partial automatic algo-
rithms. The testing of partially automatic algorithms allowed more groups
to participate and produced a more comprehensive assessment of the state
of face recognition. Six groups participated (five were from universities).
The September 1996 evaluation was administered twice: once in September
1996 and once in March 1997. This evaluation was designed to measure
progress over the course of the FERET program. As with the March 1995
test, the emphasis was upon measuring performance on duplicate images
and a large gallery of 1196 individuals (a gallery of 1196 was considered
verylarge in 1996). The September 1996 evaluation was open to groups out-
side of the FERET program, with four of the six participating groups being
from outside the FERET research program.

A major innovation of the FERET evaluations was the September 1996
FERET evaluation protocol. Prior to the September 1996 evaluation, gener-
ating performance scores for each gallery and probe set required a separate
run of an algorithm. The September 1996 FERET evaluation protocol made
it possible to compute performance in one run for multiple galleries and
probe sets. This provided a significant increase in the ability to measure
performance on a wide variety of galleries and probe sets. The multiple gal-
leries and probe sets made it possible to measure performance with
advanced statistical techniques. Advanced statistical techniques include
computing confidence intervals, performing multi-dimensional analysis,
and using resampling techniques [49, 50]. This same protocol was
subsequently used in the FRVT 2000.

There was rapid advancement in the development of commercial face
recognition systems following the success of the FERET program. This
advancement represented not only a maturing of face recognition tech-
nology, but also the development of the systems and algorithmic infra-
structure necessary to create commercial off the shelf (COTS) systems.
Developing systems included converting and porting the code from proto-
type systems to production-quality code that ran on commercial systems,
designing and developing human-computer interfaces for use by non-
technical operators, and developing standard interfaces for contending
with larger systems and databases. By the beginning of 2000, COTS face rec-
ognition systems were readily available. The Face Recognition Vendor Test
(FRVT) 2000 was subsequently organized to assess the state of the art in
COTS face recognition systems [35].

Participation in the FRVT 2000 was restricted to companies that had
commercially available systems. Participants included companies from the
USA, Australia and Germany. Five companies participated: Banque-Tec
International Pty Ltd, C-VIS Computer Vision und Automation GmbH,
Miros, Inc, Lau Technologies and Visionics Corporation.
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7.2.2 September 1996 FERET Evaluation Protocol

A design principle and testing protocol describe how evaluations are
designed and conducted. Design principles outline the core philosophy
and guiding beliefs in designing an evaluation; the evaluation protocol
provides the implementation details.

The FERET evaluations and FRVT 2000 design followed the precepts for
biometrics evaluations articulated in Phillips et al. [1]. Succinctly stated,
the precepts are:

1. Evaluations are designed and administered by groups that are inde-
pendent of algorithm developers and vendors being tested.
2. Test data is sequestered and not seen by the participants prior to an
evaluation.
. The evaluation test design, protocol and methodology are published.
4. Performance results are spread in a manner that allows for meaningful
differences among the participants.

w

Points 1 and 2 ensure fairness in an evaluation. Point 1 provides assurance
that the test is not designed to favor one participant over another. Inde-
pendent evaluations help enforce points 2 and 4. In addition, point 2
ensures that systems are evaluated on their ability to generalize perfor-
mance to new sets of faces, not the ability of the system to be tuned to a par-
ticular set of faces. When judging and interpreting results, it is necessary to
understand the conditions under which algorithms and systems are tested.
These conditions are described in the evaluation test design, protocol and
methodology. Tests are administered using an evaluation protocol that
identifies the mechanics of the tests and the manner in which the tests will
be scored. In face recognition, the protocol states the number of images of
each person in the test, how the output from the algorithm is recorded, and
how the performance results are reported. Publishing the evaluation pro-
tocol, as recommended in point 3, lets the readers of published results
understand how the results were computed. Point 4 addresses the three
bears problem.If all the scores for all algorithms are too high and within the
same error margin, then one cannot distinguish among the algorithms
tested. In addition, if the scores are too high in an evaluation, then that is an
indication that the evaluation was in reality an exercise in ‘tuning’ algo-
rithm parameters. If the scores are too low, then it is not possible to deter-
mine what problems have been solved.

The goal in designing an evaluation is to have variation among the
scores. There are two sorts of variation. The first type is variation among
the experiments in an evaluation. Most evaluations consist of a set of
experiments, where each experiment reports performance on different
problems in face recognition. For example, experiments might look at
changes in lighting, or subject pose of a face. The second type of variation is
among algorithms for each experiment. Both types of variation are
required. The variation in performance among the experiments lets one
know which problems are currently sufficiently solved for consideration in
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operational testing, which problems are research problems, and which
problems are beyond the capabilities of the field. The performance varia-
tion among algorithms lets one know which techniques are best for a par-
ticular experiment. If all the scores for all algorithms across all
experiments are virtually the same, then one cannot distinguish among the
algorithms.

The key elements that ease adoption of points 3 and 4 can be incorpo-
rated into the evaluation protocol. For FERET and FRVT 2000, this was the
FERET September 1996 evaluation. This evaluation protocol was designed
to assess the state of the art,advance the state of the art,and point to future
directions of research. The ability to accomplish these three goals simulta-
neously was through a protocol whose framework allows for the computa-
tion of performance statistics for multiple galleries and probe sets. This
allows for the September 1996 evaluation protocol to solve the three bears
problem by including galleries and probe sets of different difficulties into
the evaluation. This produces a comprehensive set of performance statis-
tics that assess the state of the art and progress in face recognition, and
point to future directions of research.

The solution to the three bears problem lies in the selection of images
used in the evaluation. The characteristics and quality of the images are
major factors in determining the difficulty of the problem being evaluated.
For example, if faces are in a predetermined position within the images, the
problem is different from that for images in which the faces can be located
anywhere within the image. In the FERET database and FRVT 2000 data
sets, variability was introduced by the inclusion of images taken at different
dates and both outside and indoor locations. This resulted in changes in
lighting, scale and background.

The testing protocol is based on a set of design principles. The design
principles directly relate the evaluation to the face recognition problem
being evaluated. In particular, for FERET and FRVT 2000, the driving appli-
cations were searching large databases and access control. Stating the
design principles allow one to assess how appropriate the FERET tests and
FRVT 2000 are for a particular face recognition algorithm. Also, design
principles assist in determining if an evaluation methodology for testing
algorithm(s) for a particular application is appropriate.

The FERET evaluation protocol consists of two parts [2]. The first is the
rules for conducting an evaluation, and the second is the format of the
results that allow for scoring. The last level of detail is the file formats for
the images given to algorithms and the file specifications for the output.
This level of detail depends on the evaluation being conducted and is
beyond the scope of this chapter.

The inputs to an algorithm or system being evaluated are two sets of
images: the target and query sets. Galleries and probe sets are constructed
from the target and query sets respectively. The output from an algorithm
is a similarity measure between all pairs of images from the target and
query sets. A similarity measure is a numerical measure of how similar two
faces are. Performance statistics are computed from the similarity mea-
sures. A complete set of similarity scores between all pairs of images from
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the target and query set is referred to as a similarity matrix. The first rule in
the FERET evaluation protocol is that a complete similarity matrix must be
computed. This rule guarantees that performance statistics can be
computed for all algorithms.

To be able to compute performance for multiple galleries and probe sets
requires that multiple images of a person are placed in both the target and
query sets. This leads to the second rule: each image in the target and query
sets is considered to contain a unique face. In practice, this rule is enforced
by giving every image in the target and query set a unique random
identifier.

The third rule is that training is completed prior to the start of an evalua-
tion. This forces each algorithm to have a general representation for faces,
not a representation tuned to a specific gallery. Also, if training were spe-
cific to a gallery, it would not be possible to construct multiple galleries and
probe sets from a single run. An algorithm would have to be retrained and
the evaluation rerun for each gallery.

Using target and query sets allows us to compute performance for dif-
ferent categories of images. Possible probe categories include (1) gallery
and probe images taken on the same day, (2) duplicates taken within a week
of the gallery image, and (3) duplicates where the time between the images
is at least one year. This is illustrated in the following example. A target and
query set consist of images of face taken both indoors and outdoors, with
two different facial expressions,and taken on two days. Thus there are eight
images of every face. From these target and query sets,one can measure the
effects of indoor versus outdoor illumination by constructing a gallery of
indoor images with neutral expressions taken on the first day, and the
probe set would consist of outdoor images with neutral expressions taken
on the first day. Construction of similar galleries and probe sets would
allow one to test the effects of temporal changes or expression changes. It is
the ability to construct galleries from the target set and probe sets from the
query set that allows the FERET September 1996 protocol to perform a
detailed analysis.

The FERET September 1996 protocol is sufficiently flexible for sub-
sampling and resampling statistical estimation techniques. For example,
one can create a gallery of 100 people and estimate an algorithm’s perfor-
mance of recognizing people in this gallery. Using this as a starting
point, we can then create galleries of 200, 300, ..., 1,000 people and deter-
mine how performance changes as the size of the gallery increases. Another
avenue of investigation is to create n different galleries of size 200, and cal-
culate the variation in algorithm performance with the different galleries
[37].

The FERET September 1996 evaluation protocol allows for the computa-
tion of performance statistics for both identification and verification sce-
narios. Identification is also referred to as “1 to n” and “one to many”
matching. Verification is also referred to as authentication and “1 to 1"
matching. In an identification application, the gallery (database) consists
of a set of known faces. Identification models real-world law enforcement
applications where alarge electronic mugbook is searched. The input to the
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system is a probe image of an unknown face. The face recognition system
then returns the closest match to the probe in the gallery. A probe is cor-
rectly identified if the closest match between the probe and gallery images
is the same person. In this chapter we report the fraction of probes in a
probe set that are correctly identified. In the general case, the top n closest
matches in the gallery are reported. The choice of the number of matches
reported is dependent of the specific application. The top n matches are
reported on a cumulative match characteristic. For details on identification
performance statistics see Phillips et al. [2]; a tutorial on biometric
performance measures can be found in Bone and Blackburn [52].

In a verification application, a system is presented with a face and a
claimed identity. The system compares the new image to a stored image
of the face of the claimed identity. If the match between the two images is
sufficiently close, the system accepts the claim; otherwise, it is rejected.
Performance for verification is reported on a receiver operating character-
istic (ROC) curve. Verification performance can be found elsewhere [2, 35,
40].

7.2.3 Data Sets

The FERET database was designed to advance the state of the art in face rec-
ognition, with the images collected to support both algorithm development
and the FERET evaluation. During the FERET program approximately one-
third of the database was released to researchers for algorithm develop-
ment with the remaining images sequestered for testing. The images in the
development set are representative of the sequestered images. After the
conclusion of the FERET and FRVT 2000 evaluations, the entire FERET
database was made available to the research community!.

In the FERET database, the facial images were collected in 15 sessions
between August 1993 and July 1996. Collection sessions lasted one to two
days. In an effort to maintain a degree of consistency throughout the data-
base, the same physical setup and location were used in each photography
session. The setup was a portable studio that consisted of a gray backdrop,a
stool for the subject to sit on, and two photographic studio lights on either
side of the subject. Thus, subjects were illuminated from both sides. In this
chapter, this is referred to as FERET lighting. However, because the equip-
ment in the portable studio had to be reassembled for each session, there
was variation from session to session (Figure 7.1).

Images of an individual were acquired in sets of 5 to 11 images, collected
under relatively unconstrained conditions. Two frontal views were taken
(fa and fb); a neutral expression was requested for the first image (fa
image), and a different facial expression was requested for the second
frontal image (fb image). For 200 sets of images, a third frontal image was
taken with a different camera and different lighting (this is referred to as

1 See http://www.nist.gov/humanid/feret/ for details on gaining access to the
FERET database.



216 Biometric Systems
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Figure 7.1 Examples of FERET image and probe categories. (a) Gallery image — fa image; (b) FB
probe — fb from same session as (a); (c) dup | probe — different day from (a); (d) dup Il probe — taken
at least one year from (a); (e) fc probe — fcimage from same session as (a).

the fc image). The remaining images were collected at various aspects
between right and left profile. To add simple variations to the database,
photographers sometimes took a second set of images, for which the sub-
jects were asked to put on their glasses and/or pull their hair back. Some-
times a second set of images of a person was taken on a later date; such a set
of images is referred to as a duplicate set. Duplicates sets result in variations
in scale, pose, expression and illumination of the face. Duplicate images
refer to both multiple sets of images in a database and to a probe that is
from a different set than the gallery image of a person. Usually, a duplicate
probe of a person is taken on a different day than the gallery image of that
person.

After three years of data collection, the FERET database contained 1564
sets of images consisting of 14,126 total images. The database contains 1199
individuals and 365 duplicate sets of images. For some people, over two
years had elapsed between their first and most recent sittings, with some
subjects being photographed multiple times (Figure 7.1). The development
portion of the database consisted of 503 sets of images and was released to
researchers. The remaining images were sequestered.

In the September 1996 FERET evaluation, the target set contained 3323
images and the query set 3816 images. The target set consisted of fa and fb
frontal images. The query set consisted of all the images in the target set
plus the fc, rotated and digitally modified images. The digitally modified
images in the query set were designed to test the effects of illumination
and scale. (Results from the rotated and digitally modified images are
not reported here.) The similarity matrix for the September 1996 evalua-
tion consisted of 12.5 million similarity scores. Since the target set is a
subset of the query set, the test output contains the similarity score
between all images in the target set. (Note: having the target set as a subset
of the query set does not constitute training and testing on the same
images. This is because the face representation is learned prior to the start
of the test.) Participants had 72 hours to complete the September 1996
evaluation.

The images in FRVT 2000 came from three sources. In order to measure
progress since the September 1996 FERET evaluation and to provide a con-
trol, FERET images where included. The second source was digitally modi-
fied FERET images. The modifications were designed to measure the
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impact of compression and changes in resolution on performance. The
third source was images from hBase. The hBase is the repository of data
collected to support algorithm development and evaluation for the Defense
Advanced Research Project Agency’s (DARPA) HumanID program [41].
The hBase data included in FRVT 2000 was collected at the National Insti-
tute of Standards and Technology (NIST) in 1999 and 2000, and at the
Navy’s facility at Dahlgren, VA, in 1998 and 1999. The images from the
hBase included in FRVT 2000 were sequestered prior to testing.

The images in the Dahlgren 1998 collection were taken indoors using a
digital camera and computer-based image capture card. The collection was
uncontrolled, and resulted in significant variations in background and
lighting conditions.

The remaining Dahlgren and NIST data collections used the same collec-
tion protocol. Both indoor and outdoor images were collected. The indoor
still image collection was an extension of the FERET image collection pro-
tocol. The protocol was extended by adding a digital camera and an addi-
tional lighting condition. Six different frontal images of each subject were
taken on 35 mm film and with a digital CCD camera. The images collected
on 35 mm film were digitized prior to inclusion in the hBase and used in
FRVT 2000.Images were collected under three lighting conditions: FERET-
style two side lamps, NIST best recommended practice mugshot lighting,
and ambient lighting (overhead fluorescent lighting). The overhead
lighting is similar to the FERET fc images. For each of the three different
lighting conditions, two expressions were collected: neutral and alternate
facial expressions. The neutral expression corresponds to the FERET fa
image and the alternate corresponds to the FERET fb image. The 35 mm
film and digital image for a person for a fixed expression and lighting con-
dition were taken almost simultaneously, within a tenth of a second of each
other.

Two images of each person were taken outdoors with a digital CCD
camera. One was a frontal image and the other was at a pose angle of 45°.In
this chapter, results are only reported for experiments that include the
frontal outdoor images. The background was periodically changed and
illumination varied because of the diurnal cycle, changes in weather and
changes in the background.

The full image data set for FRVT 2000 consisted of 13,872 images of 1,462
individuals. The first part, containing 5,416 images from 1,201 subjects
were from the FERET database. The second part consisted of 3,730 images
that were digitally generated from FERET images. These images were probe
sets in the JPEG compression and resolution experiments. The third part
was 4,726 images from 262 subjects from the hBase, the HumanID database.
A full description of the FRVT 2000 data set is at Blackburn et al. [35,
Appendices G and K].

In FRVT 2000, the target and query set were the same set of images. This
set contained 13,872 images, and the similarity matrix consisted of 192 mil-
lion similarity scores. In the FRVT 2000, participants had to perform the
192 million matches in 72 hours. This is compared to 12.5 million matches
in the same time period for the September 1996 FERET evaluation.
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7.2.4 FERET and FRVT 2000 Results

The FERET evaluations and the FRVT 2000 evaluation are each a sequence
of evaluations thatincrease in difficulty and scope. The August 1994 FERET
evaluation established an independent baseline for algorithm perfor-
mance, with the majority of probes collected on the same day as the gallery
image. The FRVT 2000 measured performance for multiple experiments,
which provided a detailed assessment of the state of the art in face recogni-
tion. This increase in difficulty and scope of the evaluations represents
advancement in automatic face recognition technology, greater under-
standing into the strengths and weakness of the technology, and increased
sophistication of evaluation techniques.

In this chapter we look at performance across all three FERET evalua-
tions for four key categories of probes. Detailed descriptions of the FERET
results can be found elsewhere [2, 3,40]. The fb probes consisted of images
that were taken within five minutes under the same lighting conditions as
the gallery image of that person. Scores from the fb probes represent an
empirical upper bound on performance for algorithms at the time of each
evaluation. The fc probes consisted of images taken within five minutes but
under a differentlighting condition from the gallery image of a person. The
gallery images were taken under studio lighting conditions, and the fc
probes were taken with ambient overhead lighting. The fc probes examine
the sensitivity of algorithms to changes of illumination. The Dup I probes
contain faces of people in the gallery that were taken on different days or
under different conditions. The Dup I probes measures the effects of tem-
poral differences between gallery and probe images. The Dup II probes are
images of faces taken at least one year apart from the corresponding facial
image in the gallery. Table 7.2 summarizes the gallery and probe set size for
each of the three FERET evaluations. Not all probe categories were included
in all evaluations.

Summaries of identification performance for the four categories of
probes across the three FERET evaluations are given in Figures 7.2 and
Figure 7.3. The x-axis is the FERET evaluation. The y-axis is the probability
of correct identification. Figure 7.2 presents the best-performing algo-
rithm in each evaluation. Performance is reported by probe category. For
example, the best identification score for the fb probe category for the
August 1994 evaluation was 0.86. The fb (same day) and Dup I (different
day) probe categories were in all three evaluations. The fc (ambient

Table 7.2 Summary of the gallery and probe sets size for each of the FERET evaluations.Probe set
sizes are provide for FB, fc,Dup I and Dup Il probe categories.

August 1994  March 1995 September 1996

Gallery size 317 831 1196
fb probes (same day) 316 780 1195
Dup | probes (different day) 50 463 733
Dup Il (one year apart) - - 234

fc probes (ambient lighting) - - 194
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Figure 7.2 FERET performance scores for best algorithm. Performance scores for FB,Dup I, Dup Il
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Figure 7.3 Average FERET performance score by evaluation and probe category. Performance
scores for FB, Dup I, Dup Il and fc probe categories are given.

lighting) and Dup II (images taken over a year apart) probe categories were
only included in the September 1996 evaluation. Figure 7.3 presents the
average performance for algorithms that took an evaluation. For example,
the average identification score for Dup I probes in the September 1996
evaluation was 0.59.

For best performance, there was a steady increase in performance for the
fb probes across the three evaluations. The increase in performance
occurred while the size of the gallery increased, and hence the difficulty of
the problem increased. For average performance on the fb probes there is
an uneven absolute increase in performance. For the best Dup I scores, the
performance was the same for the March 1995 and September 1996 evalua-
tions. However, the composition of the Dup I probe set increased in diffi-
culty. The case of the fc probes is interesting. For average performance,
performance on the fc probes was lowest for the four probe categories.
However, fc performance was significantly higher for the best algorithm.

Each FERET evaluation was more difficult than the preceding evalua-
tions. Algorithm performance did not regress, the evaluations got harder.
The two most significant measures of difficulty are gallery size and the
number of duplicate probes. In the three FERET evaluations, the size of
the gallery increased in each of the evaluations. Therefore the difficulty of
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the underlining problem being evaluated increased. In each evaluation the
number of duplicates increased and the time between acquisition of the
gallery image and corresponding duplicate probe increased. These results
show that there can be a significant difference in performance between the
“average” algorithm and the best algorithm.

The FERET evaluations showed significant advances in face recognition
technology development. The advances occurred both in terms of difficulty
and size of the problem. The FERET evaluations addressed the following
basic problems: the effects on performance of gallery size and temporal
variations. The next step in the face recognition evaluation process was to
measure performance for a greater number of probe categories. The greater
number of probe categories produced a more in depth assessment of the
state of the art in face recognition and examined issues directly related to
operational considerations.

The FRVT 2000 increased the number of probe categories to eight: com-
pression, distance, expression, illumination, media, pose, resolution and
temporal. Unlike the September 1996 FERET evaluation,in FRVT 2000 mul-
tiple experiments were performed for each probe category. Each experi-
ment corresponds to a different gallery and probe set. The number and size
of the galleries and probe sets varied by category. Three categories - com-
pression, pose and duplicates - contained experiments that used FERET
images. For the experiments that use FERET images, the best performance
score is reported without attribution to a specific vendor. For experiments
that use FRVT 2000 images, results are reported with attribution.

We will summarize the results from the FRVT 2000 by presenting top rank
identification scores for key results. Full cumulative match characteristics
(CMC) for identification and ROCs for verification, along with complete
details, can be found in Blackburn et al. [35]. Five vendors participated in
FRVT 2000; however, only C-VIS Computer Vision und Automation GmBH,
Lau Technologies and Visionics Corporation completed the tests. Results are
only presented for the three participants that completed the test.

We started by looking at the performance on the classic face recognition
problems identified in FERET: temporal variations (duplicate probes), illu-
mination changes and pose variations. We then presented results for three
new categories: effect of image compression on performance, effect on per-
formance on images taken on different media (digital images versus 35 mm
film) and effect of size of face on performance.

In FERET, the starting point for measuring performance was the fb (same
day) probes which provide an empirical upper bound on performance for a
system. For fb performance, the images of a person are taken in pairs, fa
and fb images, in the same session under the same lighting conditions. The
faimage was a neutral expression and fb was an alternative expression. The
fa was placed in the gallery and the fb was placed in the probe set.In FRVT
2000, the classic fb category performance was computed where the faimage
was in the gallery and the corresponding fb was in the probe set. In addi-
tion, performance was computed for an fa probe set. Here the fb image was
placed in the gallery, and the corresponding fa image was placed in the
probe set. For the FRVT 2000 fb and fa categories, all images were digital
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Figure 7.4 FRVT 2000 identification performance for fa and fb categories.

images with FERET-style lighting from the hBase data set. For the fa cate-
gory, the gallery consisted of 225 fa images and the probe set consisted of
228 fb images. For the fa category, the gallery consisted of 224 fb images
and the probe set consisted of 228 fa images. All images in both categories
came from the same set of 225 people. Identification rates for both
categories are shown in Figure 7.4.

For the vast majority of applications, the most important issue was the
ability of systems to recognize faces when there is a temporal change
between the gallery and probe images of a person. In the FERET nomencla-
ture, this is a duplicate probe set. FRVT 2000 measures duplicate perfor-
mance for two sets of experiments. Performance is computed for the FERET
September 1996 Dup I and Dup II probe sets (see Figure 7.5). Figure 7.5
reports the best performance of the FRVT 2000 participants on the Dup I
(different day) and Dup II (one year apart) probes. This shows some
improvement in performance from FERET on the Dup I probes. For the
Dup II probes, an increase from 0.52 on FERET to 0.64 on FRVT 2000.

The second set of duplicate performance scores was computed from
images collect at as part of the hBase program. Three experiments report
performance for three different galleries and one probe set. The probe set
consisted of 467 images with overhead lighting. The galleries consisted of
the same people taken on the same day with the neutral expression (one
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Figure 7.5 FRVT 2000 performance for September 96 FERET Dup | and Dup Il probe sets.
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gallery image is missing for one person). The difference among the gal-
leries was the lighting: mugshot, FERET-style and overhead fluorescent.
The gallery sizes were 227, 227 and 226, respectively. The time difference
between the acquisitions of the gallery and probe images of a person was 11
to 13 months. Performance results are presented in Figure 7.6. For Lau
Technologies and Visionics, the performance on the mugshot and FERET
style galleries are the virtually the same. For these two vendors, there is a
drop in performance for the overhead lighting gallery.

The last major category of probes investigated in the FERET evaluation
was the effect of illumination changes on performance. In FERET nomen-
clature, these was the fc (ambient lighting) probes. In FRVT 2000, there
were two types of illumination. The first type was indoor images taken with
overhead ambient light from fluorescent lights, which are referred to as fc-
indoor probes. The second type were images taken outdoors, which are
referred to as fc-outdoor probes. The gallery consisted of images taken
indoors under mugshot lighting conditions. All images of a person were
taken on the same day within 30 minutes. The images were digital and the
neutral expression (fa) images were used. The gallery consisted of 227 indi-
viduals with one image per person. There were 189 fc-indoor probes and
190 fc-outdoor probes. The results for the illumination experiments are
presented in Figure 7.7. Compared to the same-day (fa and fb) probe sets in
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Figure 7.7 FRVT 2000 performance for fc-indoors and fc-outdoor probe sets.
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Figure 7.4, there is a small drop in performance for the fc-indoor probes.
Compared to the fc-indoor probe set, there is a significant drop in perfor-
mance for the fc-outdoor probe set. The results show a significant drop in
performance for all systems for the fc-outdoor probes, and variable drop in
performance for the fc-indoor probes.

The majority of face recognition systems are designed to work on frontal
facial images. However, the ability to recognize faces from non-frontal
poses is important in numerous applications. The effect of pose variation
on performance was measured in the August 1994 FERET evaluation, but
was not examined in the subsequent FERET evaluations. FRVT 2000 revis-
ited the effects of pose variations. For this experiment, the gallery consisted
of 200 frontal images (one image per person) from the FERET database.
Performance scores are reported for four probe sets, where the images in
each probe set consisted of images at the same angle off frontal. The four
angles were +15°,425°,+40° and 160°. The rotations result from moving the
head right or left in the image plane, with 0° being the frontal image and
190° being the left and right profile images. The size of each probe set is 400,
with two images per person. One image was taken to the right and one to
the left at the specified angle. Figure 7.8 shows the results for the system
with the best performance results. The results show that performance was
not seriously affected for pose angles up to 25°. At 40° performance starts to
drop sharply.

In addition to repeating variations on FERET experiments, FRVT 2000
investigated the effects on performance of compression, comparingimages
taken on 35 mm film and digitally, and the effects of resolution of perfor-
mance. These categories address system design factors and their effect on
vendor performance had not been previously examined.

Compression is of interest because, during transmission or storage,
facial images could be compressed. In this experiment, we model the effects
on performance of compression on the transmission of the probes. Perfor-
mance was computed for five levels of JPEG compression: 1:1 (no compres-
sion), 10:1,20:1,30:1 and 40:1. JPEG compression was selected because it is
the de facto standard compression technique. A probe set was generated for
each compression rate by compressing the probes in the September 1996
FERET Dup I probe set. The gallery consisted of the standard September
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Figure 7.8 FRVT 2000 experiment on pose variation.The gallery consisted of frontal images (0°),
and performance is measured for four probes each with a different angle off center.
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Figure 7.9 FRVT 2000 performance for five levels of JPEG compression.

1996 FERET gallery. The gallery images were not compressed. Figure 7.9
shows results for the algorithm with the best performance. The results
show that performance does not deteriorate for compression levels
through 30:1.

In FERET and most other face databases used in research, all of the images
are collected on the same medium (the medium is the type of material used
to record an image). In FRVT 2000, the medium was either 35 mm film or dig-
ital electronic storage. In most real-world applications, images will be col-
lected on different media. To examine the effect of shaping media, FRVT 2000
performed two experiments. In both experiments, all images of the same
person were taken within a few tenths of a second with the same expression
and mugshot lighting. In the first experiment, the gallery consists of 96 indi-
viduals taken with 35 mm film, and the probe set consisted of 102 probes
taken with a digital camera. In the second experiment, the gallery consisted
of digital images of 227 individuals, and the probe set consisted of 99 probes
taken with 35 mm film. Results for both experiments are shown in Figure
7.10. The results show that for Lau Technologies and Visionics changing the
medium does not significantly affect performance.

One of the critical parameters in designing a system is the number of
pixels on a face, or resolution of a face, required to achieve a set perfor-
mance level. FRVT 2000 ran four experiments to measure the affect of facial
resolution on performance. In face recognition, the inter-ocular distance,
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Figure 7.10 Performance results for FRVT 2000 experiments on changes in media.
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Figure 7.11 Performance results for FRVT 2000 experiments on the effects of resolution.

the number pixels between the centers of the eyes, measures the resolution
of a face.

For all resolution experiments, the gallery was the same and consisted of
101 fa digital images collected with mugshot lighting (with one image per
person in the gallery). The gallery images were not rescaled. The gallery
images had a mean eye separation of 138.7 pixels with a range of 88-163
pixels. Four probe sets were generated from the corresponding fb image of
the faimages in the gallery. The four probe sets were generated by digitally
rescaling the fb images to specified inter-ocular distances. The specified
inter-ocular distances were 60,45,30 and 15 pixels. All probes in a probe set
had the same inter-ocular distance. All probe sets had 102 images (one
person had two fb images). The results are shown in Figure 7.11. In most
cases, performance did not drop significantly throughout the tested range
of resolution reduction and, for some vendors, performance increased
slightly as resolution was reduced. In fact, for all vendors, performance did
not decrease when the inter-ocular distance was decreased from 60 to 45
pixels.

7.2.5 Conclusions Drawn from the FERET Evaluations and FRVT 2000

Comparison of the results from the FERET evaluation and FRVT 2000
shows clear progress in automatic face recognition technology develop-
ment from 1993 through 2000. This progress was measured from the estab-
lishment of the first benchmark performance of face recognition in 1994
(FERET) to measuring performance of COTS systems in 2000 (FRVT 2000).
The FERET evaluations and FRVT 2000 both played a critical role in mea-
suring technological advancement and propelling actual technological
improvements.

The four evaluations discussed in this chapter clearly identify future
research directions, with those directions being consistent across all four
evaluations. All the results and experiments in the FERET evaluations and
FRVT 2000 fall into four groups, with each group corresponding to a gen-
eral face recognition problem. The first group consists of experiments



226 Biometric Systems

where the gallery and probe images were taken indoors and on the same
day. This includes fb probes (same lighting, different expression) and fc
probes (different lighting), and resolution and media experiments. The
second group consists of experiments where the gallery image is taken
indoors with the probe image taken outdoors. In the FRVT 2000, the gallery
and probe images were taken on the same day for this group of experi-
ments. The third group consists of experiments where the gallery and
probe images are taken on separate days. This includes the FERET Dup I
and Dup II categories and temporal variations in FRVT 2000. The fourth
group consists of pose variations where gallery and probe images are taken
at different poses.

The first group (same day, indoors) represents the easiest category. For
all experiments presented in this chapter, identification scores above 80%
occurred only for experiments in this category. (Note: not all experiments
in this category had scores above 80%. Also, in the pose experiment, the
near frontal images taken on the same day had identification rates above
80%.) For FRVT 2000, the best performer for each experiment in this cate-
gory had an identification rate above 90%. In FRVT 2000, performance on
the fb probe category was 96% for Visionics, which represents an empirical
upper bound on performance at the time of FRVT 2000.

The performance in the other three groups is characterized by identifica-
tion rates well below 80%. Each of the groups corresponds to a research
direction and problem area in face recognition. The second group defines
the problem of recognizing faces under temporal variations. This problem
has been a classic problem in face recognition and remains an active and
important area of research. The vast majority of real-world applications
require recognition from images taken on different days. The FERET pro-
gram and duplicate images set in the FERET database have encouraged
research on temporal variations.

The third group of results identify that pose variation is a research area.
The August 1994 FERET and FRVT 2000 evaluations measured perfor-
mance in this area. However, there has not been a strong research emphasis
in this area. This lack of emphasis may be attributed to initial research con-
centrating on frontal face recognition versus recognition with pose varia-
tion. The availability of the Carnegie Mellon University (CMU) pose,
illumination and expression (PIE) database has contributed to renewed
interest in this problem? [51].

The last research area in face recognition is recognition of faces in out-
door imagery. This is a problem that had not previously received much
attention, but is increasingly important. The greatest challenge in recogni-
tion using outdoor imagery is handling illumination variability due to sun-
light and the diurnal cycle.

Three of the four groups define interesting areas that need further
research. This is from both the technical and application points of view.

2 Information on the CMU PIE database can be found at http://www.hid.ri.
cmu.edu/Hid/databases pie.html.
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However, the “same day, different expression” group does not represent an
interesting research area. There are very few, if any, applications where the
only difference between gallery and probe images is an expression change.
From an algorithmic point of view, to show significant technical progress is
this area a much larger database of faces is needed. A larger database of
imagery would reduce the identification rate and allow room for improve-
ment to be demonstrated.

FRVT 2000 examined the effects of compression, media changes,and res-
olution on performance. These issues are important for applications, and
their effect on performance needs to be taken into consideration when
designing systems. FRVT 2000 showed that for the systems tested, media
changes do not affect performance, reasonable compression rates do not
affect performance, and resolution above 15 pixels does not affect perfor-
mance. One interesting observation is that in some cases, compression or a
reduction in resolution can increase performance. This improvement in
performance most likely occurs because compression and resolution
reduction act as bandpass filters [37]. As automatic face recognition con-
tinues to advance, it will be necessary to revisit the effects that media
changes, compression and resolution have on performance.

FRVT 2000 documented the progress in performance made since the last
FERET evaluation. There was improvement in performance on the Dup I
and Dup II probe categories. For the best algorithms, performance
increased from 0.59 to 0.63 for Dup I and 0.52 to 0.64 for Dup II.

Equally importantly, the FRVT 2000 marks a significant maturing point
in automatic face recognition technology. The systems evaluated in FRVT
2000 were all commercial off the shelf systems (COTS) and were required to
automatically process 27,744 images and perform 192 million matches in
72 hours. A mere three years after FERET evaluated prototype systems in
academia, COTS system were completing evaluations harder than the any
of the FERET evaluations. It is significant to note that this occurred only
seven years after the start of the FERET program. Progress in face recogni-
tion has continued since FRVT 2000. The next significant face recognition
evaluation is the Face Recognition Vendor Test 2002, which was being orga-
nized at the time this chapter was written>.

7.3 Meta-Analysis

Independent evaluations are one method of assessing advancement. To
get to the point where an algorithm or system is mature enough to partici-
pate in an evaluation requires considerable research, engineering and soft-
ware development. Results from initial research are usually published in
the academic literature. Thus, advances in face recognition require that
research concentrate on problems that need to be solved, with independent

3 Results of the FRVT 2002 can be found at http://www.frvt.org/.
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evaluation being very good at identifying these problems. For new tech-
niques, it is necessary to identify which new approaches are potential
breakthroughs and which are not. One method of determining whether
researchers are concentrating on interesting problems and making prog-
ress on these problems is meta-analysis.

7.3.1 Introduction to Meta-Analysis

Meta-analysis is a quantitative method for analyzing the results from mul-
tiple papers on the same subject [28, 29]. Meta-analysis can be performed
to consolidate a group of experimental results or to gain deeper insight into
methodological techniques in a field. Meta-analysis has been used exten-
sively in medicine, psychology and the social sciences.

One type of meta-analysis is a statistical analysis of results from multiple
papers on a subject from different research groups. The goal is to take the
results of a number of possibly contradictory or inconclusive studies and
discover what may be collectively said about a given field. This analysis can
provide conclusive results from a series of inconclusive studies or spot
trends that cannot be detected from a single experiment. Examples of this
are the efficaciousness of Taxol for breast cancer [29], the effectiveness of
bilingual education [30] and an assessment of human identification
studies in psychology [31].

The key feature of meta-analysis is that it requires results from multiple
papers from different groups. This is different from independent evalua-
tions such as FRVT 2000 or FERET. In evaluations, the performance of a set
of algorithms is measured on the same images and at the same time. The
results are reported in a single paper. Our meta-analysis examines perfor-
mance through analysis of 24 papers on face recognition. In fact,bylooking
at performance across multiple evaluations one could perform a meta-
analysis on face recognition evaluations.

A second type of meta-analysis examines a field to identify potential
methodological problems. Each field has its established conventions for
conducting and reporting research results. It is possible that the estab-
lished conventions will have adverse effects on the field or skew results. In
this chapter, we examine the current methods for conducting and reporting
results for automatic face recognition algorithms.

In the medicine, the placebo effect is an accepted phenomenon in clinical
experiments. However, a recent meta-analysis by Hrébjartsson and
Gotzsche [39] has brought into question this long-accepted idea. In clinical
trials, the accepted rule of thumb has been that placebos can improve a
wide range of conditions in up to 30-40% of “treated” patients. In this
meta-analysis, the authors reexamined clinical trials where patients were
randomly assigned either to a no-treatment or to a placebo group. The
reexamination found no significant differences in outcomes between the
no-treatment and placebo groups.

Two classic studies from medicine further illustrate this category of
meta-analysis. The first is the study by Hedges [32] that showed a bias
in meta-analyses in medicine because of their tendency to not include
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unpublished studies. Published studies tend to show greater effectiveness
of a new drug or medical regime than unpublished studies. Thus, meta-
analyses that excluded unpublished studies would be biased towards
showing greater effectiveness of a new drug or regime.

The second is the study by Colditz et al. [33] that showed a bias in results
from non-randomized experiments in medicine. In a prototypical experi-
ment, a test subject is assigned either to an experimental regime or to a control
regime. In a randomized test, subjects are randomly placed in either a treat-
ment (experimental) group or a control group. Colditz et al. showed that non-
randomized studies report a higher success rate than randomized studies.

Like the two previous examples, our analysis addresses experimental
methodological issues and conventions for face recognition algorithms. By
performing a meta-analysis, not only can we quantitatively investigate the
validity of the reported results, we can also report on the underlying causes
and recommend possible solutions.

While the face recognition community has discussed some of the results
of this analysis at the philosophical level, none have been studied quantita-
tively. There is a quip in the face recognition community that researchers
always report algorithm performance of 95% and higher (correct identifi-
cation). At the same time, the FERET evaluations FRVT 2000 show such
performance for only one case: images taken on the same day under the
same lighting conditions.

We will address the importance of choosing the correct evaluation meth-
odology for conducting experiments; the role of a baseline (or control)
algorithm in experiments; and the need to document experimental param-
eters, design decisions, and performance results.

Automatic face recognition is amenable to meta-analysis for a number of
reasons. The first is that this has been a very active area of research for the
last decade, so there is a sizable amount of accumulated work in the area.
Second, there exists an accepted quantitative performance measure - prob-
ability of identification. Third, there exist databases of facial images that
are available to researchers and are used to report results in the literature.
Fourth, there exist independent measures of performance - the FERET
evaluations for example. Fifth, there exists an accepted baseline algorithm
that is easily implemented - principal component analysis (PCA)-based
algorithms (also known as eigenfaces) [34].

7.3.2 Methodology for Selecting Papers

We selected papers for this study that ran experiments using either the
FERET or the AT&T Laboratories-Cambridge (ORL) databases and
reported identification performance results for full frontal facial images.
The FERET and ORL databases were selected because they are extensively
used in the face recognition community* [43].

4 See http://www.uk.research.att.com/facedatabase.html for details on
gaining access to the ORL database.
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We searched major computer vision and face recognition conference
proceedings, journals, edited books and the IEEE Xplore journal and con-
ference archive. This produced 47 papers. We then removed papers that had
similar experimental results from the same research group. The similar
results occurred because preliminary papers appeared in conferences and
the final version appeared in a journal. With one exception, the journal ver-
sion was selected. The winnowing process produced 24 papers for further
analysis. A list of these papers is in the reference section [4-27].

Each paper selected presented a new face recognition algorithm, which
we will refer to as an experimental algorithm. The effectiveness of an
experimental algorithm is demonstrated by performing experiments on
one or more data sets. In addition, some authors report results for more
than one variation on the experimental algorithm. If the authors reported
performance for a number of variations for an algorithm, we choose the
variation with the best overall performance. A number of papers reported
performance scores for additional algorithms that served as baselines. If
there was only one baseline algorithm, we refer to this as the baseline algo-
rithm for the experiment. In this case, the baseline algorithm was usually a
correlation- or PCA-based face recognition algorithm. If there were mul-
tiple baseline algorithms, we selected the variation of a PCA-based algo-
rithm with the best performance as the baseline algorithm.

The 24 papers selected yielded 68 performance scores. The 68 scores
include multiple experiments in a paper and baseline algorithms. This
analysis was performed on the identification error rate, which is one minus
the rank one identification rate. A more detailed analysis can be found in
Phillips and Newton [39].

We consolidated the results of three sets of papers. The first set of consol-
idated papers reported results on the ORL database using the same basic
evaluation protocol [8-10, 14,19, 22,23]. Two of these papers also reported
results on the FERET database [10, 23]. The second set were two papers by
Moghaddam and Pentland [15, 16] that used the same image sets. The third
set consisted of three papers by Liu and Wechsler [11-13] that used the
same image sets.

7.3.3 Analysis of Performance Scores — Viewing the Data Through
Histograms

We examine the first question, “Are researchers working on interesting
problems?”, through histograms. Histograms summarize the distribution
of performance scores (error rates in the meta-analysis) and allow peaks in
the distribution to be easily identified. If the peaks are concentrated with
low error rates, then this is evidence that researchers are concentrating on
an easy problem that is not interesting. If the peaks are concentrated other
places, then researchers are concentrating on hard problems.

We first looked at the distribution of the identification error rates across
all experiments and algorithms (experimental and baseline algorithms).
Traditionally, researchers have reported identification rate, in other
words their success in recognizing faces. In the meta-analysis, we choose to
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Figure7.12 Histogram of all experimental and baseline error rate scores.Each bar corresponds to
scores greater than the lower interval and equal to or less than the upper interval.

characterize performance by the identification error. The error rate is the
percentage of probes that are not correctly identified, which is one minus
the top-match identification rate. Figure 7.12 is a histogram of the error
rate distribution for algorithms. For the 68 performance scores included in
this meta-analysis, 56% (38 out of 68) have an error rate below 0.10.

Next we restricted our attention to the experimental and baseline algo-
rithms according to the exclusion criteria described at the end of the pre-
vious section. This yielded 40 experimental algorithms, 33 of which have
corresponding baseline algorithms. There are fewer baseline algorithms
because seven studies did not use a baseline. Some baseline algorithms cor-
respond to more than one experimental algorithm (e.g. the ORL series has
one baseline algorithm for 10 experimental algorithms).

Figure 7.13 shows a histogram of error rates for experimental algorithms
in black and baseline algorithms in white. To illustrate the influence of a
baseline score, we counted them each time a score served as a baseline (for a
total of 33 baselines). For example, for the ORL experiments, we counted
the baseline algorithm 10 times. Figure 7.13 shows that 29 of the 40 (73%)
experimental algorithms report error rates of 0.10 or less.

We examined the seven experimental algorithms that do not have a base-
line score. The error rates for these algorithms are: 0.008, 0.01, 0.02, 0.034,
0.045,0.046 and 0.28. Their median is 0.034. These scores (1) show that 6 out
of 7 experiments have an error rate less than 0.05, (2) contain the best error
rate (0.008) for all 40 experimental algorithms in this analysis, and (3)
account for one third of the experimental algorithms with error rates below
0.05. Clearly, the results from experimental algorithms without a sup-
porting baseline algorithm are highly biased.

Seven papers report experimental results on the ORL database [8-10, 14,
19, 22, 23]. This produced 11 performance scores: 10 experimental and 1
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Figure 7.13 Histogram of error rates for experimental and baseline algorithms. Each bar corre-
sponds to scores greater than the lower interval and equal to or less than the upper interval.

baseline. The PCA algorithm in Lawrence et al. [8] was the baseline algo-
rithm for the ORL experiments. The baseline error rate is 0.105. The error
rate range for the experimental algorithms is between 0.029 and 0.13, with 7
out of 10 performance scores equal to or less than 0.05. This indicates that
performance has been saturated using this data set, and the data set does
not define a sufficiently challenging problem for automatic face recogni-
tion.In the ORL database, all the pictures of a person are taken on the same
day. Thus, experiments on the ORL database are equivalent to fb (same day,
same lighting) experiments on FERET data. Our conclusions on the diffi-
culty of the ORL database are consistent with our findings for fb experi-
ments on FERET data: it no longer represents an interesting problem.

7.3.4 Evaluation of Experiments with a Baseline

We next look at the second question: “Is progress being made on inter-
esting face recognition problems?”. Ideally this would be accomplished by
directly comparing performance of the experimental algorithms. This
would require that all the algorithms report performance on the same data
sets. Unfortunately, this is not possible. Therefore, to compare performance
we have to use indirect methods. This restricts our analysis to experimental
algorithms that also report performance for a baseline algorithm. To indi-
rectly compare algorithms, we measure the relationship between the per-
formance scores of the experimental and baseline algorithms on the same
experiments.

We assess progress by examining the relationship between experimental
and baseline performance scores. A scatter plot is commonly used to show
this relationship. Figure 7.14 is a scatter plot of the 33 experimental scores
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Figure 7.14 Scatter of baseline and experimental error rates for all experiments with a baseline
algorithm.The best-fit line shows the correlation between the experimental and baseline scores.

that had corresponding baseline scores. Each point in the scatter plot is an
experiment. The x-axis is the baseline score, and the y-axis is the corre-
sponding experimental score. A best-fit line for the data is shown in Figure
7.14 as well. If the points are close to the best-fit line, then there is a correla-
tion between the experimental and baseline scores. In other words, the
baseline scores are predictive of the experimental scores. To formalize the
analysis of this relationship, we computed the correlation coefficient value
rfor the 33 pairs of scores. If the experimental and baseline scores were per-
fectly correlated, then the r-values would be 1.0. The observed correlation
value ris 0.932 with a significance level greater than 0.01. This shows strong
correlation between the 33 pairs of baseline and experimental scores.

Next we divided the pairs of scores into two groups and examined the
relationship between experimental and baseline scores for pairs with base-
line scores above 0.20 and below 0.20. Figure 7.15 is a scatter plot of the nine
experimental algorithms with baseline scores above 0.20. The correlation
coefficient r is 0.953, which has a significance level greater than 0.01. This
shows that the baseline scores are predictive of the experimental error rates
when the baseline scores are greater than 0.20. In fact, the performance
scores of experimental algorithms can be predicted from the baseline per-
formance scores. This implies that all the algorithms are making the same
incremental increase in performance over the baseline algorithm.

The correlation coefficient for algorithms with baseline scores less than
0.20 was 0.283. A correlation value of 0.283 is not significant and shows that
the experimental and baseline scores are not correlated. There are two
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Figure 7.15 Scatter plot for experimental and baseline scores with a baseline error rate > 0.20.
The best-fit line shows the correlation between experimental and baseline error rates.

Table 7.3 Summary of results from Figures 7.14 and 7.15.

All algorithms Algorithms with Algorithms with  Figure No.

with a baseline error baseline error

baseline rates >0.20 rates <0.20
No. of 33 9 24 14
experimental
algorithms
Correlation 0.932 0.953 0.283 15
value r
Level of <0.01 <0.01 Not significant N/A
significance

possible explanations for the scores not being correlated: first, that perfor-
mance is saturated for low error rates with PCA-based algorithms; or
second, that PCA-based algorithms are not appropriate baseline algo-
rithms for low error experiments. The results of the scatter plot analysis are
summarized in Table 7.3.

7.3.5 Meta-Analysis Conclusions

The meta-analysis discussed in this section looked at two questions: are
researchers concentrating on interesting problems in face recognition, and
is progress being made on interesting problems?
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For the first question, this meta-analysis identifies that the majority of
papers in scientific literature concentrated on developing face recognition
algorithms to solve problems that are not interesting. These problems are
characterized by images being taken on the same day under the same
lighting conditions. This problem does not model a real-world application
and only provides an upper bound on algorithm performance. Results on
experiments that model this problem are a first step in demonstrating the
capabilities of an algorithm. In addition to including results on this easy
problem, papers need to include experimental results on harder problems.
Experimental results on harder problems will give the face recognition
community a chance to properly assess whether a new algorithm repre-
sents an improvement over existing approaches.

When designing experiments on images collected on the same day with
the same light (an easy problem), existing results must be taken into con-
sideration. On the equivalent FRVT 2000 results, fb probe sets, the best
COTS system obtained an identification rate 0.96 (error rate of 0.04) on a
gallery of 225 people. Since these results are on COTS systems, researchers
would need to demonstrate that an experimental algorithm performs con-
siderably better than available COTS systems.

There are many researchers who are working on interesting problems. In
the papers studied in this meta-analysis, an interesting problem is charac-
terized by images of a person taken indoors on different days. However, is
significant progress being made on this problem? The answer from this
meta-analysis is no. Meta-analysis results show that baseline and experi-
mental algorithm scores are correlated and that all algorithms are making
the same incremental improvement over the baseline. This strong correla-
tion raises three questions for future investigations. First, why is the
improvement in performance of experimental algorithms only incre-
mental over the experimental scores? Second, could one detect break-
throughs in face recognition through performance of an experimental
algorithm that is not predicted by a baseline score? Third, because of the
strong correlation, are all the algorithms using essentially the same
information to perform recognition?

The answers to the two questions studied in the meta-analysis suggest
that a new methodology for conducting and reporting experiments needs
to be adopted by the face recognition community. To foster discussion on a
new experimental methodology we make the following recommendations:

® The face recognition community should establish an algorithm imple-
mentation as a baseline.

® The face recognition community should establish a set of standard chal-
lenge problems.

® Published papers should report results on appropriate challenging prob-
lems and, for new data sets, provide new performance baseline results.

A common baseline will allow for the difficulty of data sets and problems
to be calibrated. In addition, it will allow for indirect comparison among
algorithms. The establishment of a set of challenge problems will allow for
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the direct comparison among algorithms and a measure of progress. As
progress is made in face recognition, the baseline and challenge problems
will need to be updated to adjust for improvements and progress in face
recognition technology. One possible source of baseline implementations
is the baseline suite from Colorado State University [55].

Publishing the performance results of experimental algorithms on chal-
lenging problems will fix a base level of performance. Some experimental
algorithms will be designed to address new problems that are not part of
the standard set of challenge problems. Reporting baseline performance on
new problems will provide a measure of difficulty for the new problem.
Also, reporting the performance of experimental algorithms on standard
challenge problems will provide a comparison point with existing algo-
rithms. Providing performance on both the new problem and standard
challenge problems will allow for robust comparisons with other methods.

Scientific fields advance by conducting research on hard and interesting
problems. The FERET evaluations and FRVT 2000 have identified three
hard problems that have real-world applications: temporal changes
between gallery and probe images, pose variations, and recognition from
outdoor imagery. By following our recommendations, it will enable the face
recognition community to make quantifiable progress while simulta-
neously working on problems that are relevant to the real-world
applications.

7.4 Conclusion

Measuring progress in face recognition, as with any biometric, is a multi-
dimensional process. More than one technique is required for measuring
progress. In this chapter we have discussed two methods: independent
technology evaluations and meta-analysis.

The conclusions from the FERET and FRVT 2000 evaluations and the
meta-analysis appear to be contradictory. The independent evaluations
show progress, whereas the meta-analysis suggests that progress is not
being made. This contradiction can be explained by the manner in which
expectations are established and progress is measured in evaluations and
in scientific papers. In scientific papers, it is not possible to directly com-
pare performance among algorithms, whereas in evaluations, the partici-
pants know that their performance will be measured against others. This
encourages participants to develop new techniques and algorithms with
demonstrably better performance than those of rival research groups. This
was nicely demonstrated in the September 1996 FERET evaluations. Two
groups, Massachusetts Institute of Technology (MIT) and the University of
Maryland (UMD), each submitted two algorithms. The MIT group sub-
mitted the algorithm from the March 1995 evaluation and a new algorithm
designed for the September 1996 evaluation. UMD took the September
1996 evaluation twice: in September 1996 and March 1997. For both groups,
there was a substantial increase in performance between the first and
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second algorithms. The improvement was stimulated by their participation
in the evaluations.

In the academic literature, improvement is generally measured by
showing an increase in performance over a baseline algorithm. Comparing
the performance of an experimental algorithm with a baseline algorithm
allows for an indirect comparison of algorithms. What is needed is a mech-
anism to directly compare performance across experimental algorithms.
This can be accomplished by following our recommendations of estab-
lishing standard challenge problems and standard baseline algorithms for
calibrating the difficulty of a challenge problem. If the face recognition
community accepted the standard challenge problems and baseline algo-
rithm, this would change the expectations for performance needed to pub-
lish a paper and provide a common yardstick for measuring progress.

Methods for measuring and assessing performance are critical elements
in advancing automatic face recognition technology. The FERET evalua-
tions and FRVT 2000 have a proven track record of advancing face recogni-
tion technology. Helping to guide and nurture automatic face recognition
technology from its infancy to mature commercially available systems. The
next step in face recognition technology evaluations is the FRVT 2002,
which will evaluate the performance of systems on a data set of 121,000
images. Complementing the maturing of technology evaluations is the
development of techniques and methods for performing scenario and
operational evaluations [52,53]. The methods discussed in this chapter are
also applicable to other areas of biometrics, and have the potential to assist
in advancing all areas of biometrics.
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The NIST speaker recognition
evaluation program

Alvin Martin, Mark Przybocki and Joseph P. Campbell, Jr!

8.1 Introduction

The National Institute of Standards and Technology (NIST) has coordi-
nated annual scientific evaluations of text-independent speaker recogni-
tion since 1996. These evaluations aim to provide important contributions
to the direction of research efforts and the calibration of technical capabili-
ties. They are intended to be of interest to all researchers working on the
general problem of text-independent speaker recognition. To this end, the
evaluations are designed to be simple, fully supported, accessible and
focused on core technology issues.

The evaluations have focused primarily on speaker detection in the con-
text of conversational telephone speech. More recent evaluations have also
included related tasks, such as speaker segmentation, and have used data in
addition to conversational telephone speech. The evaluations are designed
to foster research progress, with the objectives of:

1. Exploring promising new ideas in speaker recognition
2. Developing advanced technology incorporating these ideas
3. Measuring the performance of this technology

The 2002 evaluation included 25 participating sites, by far the largest
number to date. Evaluation participants included commercial, academic
and governmental research laboratories. The nations represented included
Australia, China, France, India, Israel, South Africa, Greece, Spain, Sweden
and the USA. As in the past several evaluations, the ELISA Consortium (a
group of European laboratories [8, 11]) participated collaboratively and
also with individual submissions from each laboratory.

Information on the more recent NIST speaker recognition evaluations,
including their official evaluation plans, is available on the NIST Speaker

1 This work is sponsored by the Department of Defense under Air Force Contract
F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations
are those of the author and are not necessarily endorsed by the United States
Government.
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Recognition website [1]. Evaluation data kits used in past evaluations are
available as publications of the Linguistic Data Consortium [2].

A scientific evaluation paradigm is used for each NIST evaluation. A blind
evaluation is conducted in which the participants do not know the speaker
identities in advance. An evaluation begins with each participant registering
with NIST and acquiring development and evaluation data as defined in the
NIST evaluation plan for that year. The participants run their systems on the
development data, for which speaker identities are given, to develop their
algorithms, set thresholds, etc. Then the participants are given a limited time
period (typically four weeks) to run their systems on the blind evaluation
data and submit scores to NIST. NIST then evaluates the scores of the partici-
pants’ systems and releases the answer key. Participants are encouraged to
perform post-evaluation analysis using the answer key in preparation for the
workshop. A workshop is held where NIST presents results of the various
participants’ systems and results on poolings of the data that are of interest
to the community. The participants are required to present the details of
their systems at the workshop and to submit system descriptions. Any sub-
missions after the answer key is released are considered late and unofficial.
Once the data and its corresponding answer key have been released, it is con-
sidered exposed and its use in future evaluations is carefully controlled (e.g.
it becomes development data in subsequent evaluations). As defined in the
evaluation plan [1],each of the evaluation tasks has its own rules and restric-
tions, but the following ones are in common:

® Listening to evaluation data is not allowed.

® Each decision is to be made independently:

- based on the specified test segment and speaker model

- use of other test segments or other models is not allowed
Normalization over multiple test segments is not allowed.
Normalization over multiple target speakers is not allowed.

Use of evaluation data for impostor modeling is not allowed.

Use of manually produced transcripts or other information for training
is not allowed, except when allowed under the extended data evaluation.
Knowledge of the target speaker’s sex is allowed and the segment
speaker’s sex is known to be that of the target in non-cross-sex trials.

Other biometric evaluations are adopting similar scientific paradigms and
guidelines appropriately adapted to the biometric under evaluation, as
described elsewhere in this book.

8.2 NIST Speaker Recognition Evaluation Tasks

We describe in this section the four types of task that have been included in
some of the NIST annual evaluations. Of these four tasks, it is the one-
speaker detection task that has been a part of each evaluation and is the one
most central to biometric identification [16] using speech.
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The two most recent evaluations have each introduced a variant of the
one-speaker detection task. The 2001 and 2002 evaluations included an
extended data one-speaker detection task, which uses much larger
amounts of data for speaker training and much longer speech data seg-
ments for testing. Transcripts generated by an automatic speech recogni-
tion (ASR) system were provided for all of the data. The 2002 evaluation
included a multimodal test using a Federal Bureau of Investigation (FBI)
corpus of forensic-type data. This FBI corpus included data from two types
of microphone as well as telephone data. These tests have had some impres-
sive results and are discussed in Sections 8.7 and 8.8.

8.2.1 One-Speaker Detection

This is the basic speaker recognition task that has been part of all the NIST
evaluations. The task is to determine whether a specified speaker is
speaking in a given single-channel segment of mu-law encoded telephone
speech. The hypothesized speakers are always of the same sex as the seg-
ment speaker.

The task each year consists of a sequence of trials; the main one-speaker
test in 2002 had about 39,000 trials. A trial consisted of a single hypothe-
sized speaker and a specific test segment. The system is required to make
an actual (true or false) decision on whether the specified speaker is
present in the test segment. Along with each actual decision, systems are
also required to provide for each trial a likelihood score indicating the
degree of confidence in the decision. Higher scores indicate greater confi-
dence in the presence of the speaker. A trial where the hypothesized
speaker is present in the test segment (correct answer true) is referred to as
a target trial. Other trials (correct answer false) are referred to as impostor
trials.

8.2.2 Two-Speaker Detection

This task is the same as the one-speaker detection task, except that the
speech segments include both sides of a telephone call with two speakers
present and the channels summed. Unlike the one-speaker detection task
where each training and test segment is limited to a single speaker, here
systems must deal with the confounding presence of a second speaker. Note
that the task is to determine whether the one specified speaker is present in
the combined signal. The segment speakers may be of the same or opposite
sex, but the hypothesized speaker is always of the same sex as at least one of
the segment speakers.

8.2.3 Speaker Tracking

This task is to perform speaker detection as a function of time. The
tracking task uses summed channel segments, as in the two-speaker detec-
tion task. Systems are required to identify the time intervals (if any)
when the hypothesized speaker is speaking. This task may be viewed as a
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generalization of the two-speaker detection task. Note that the single target
speaker is known, with training data provided.

8.2.4 Speaker Segmentation

This task requires systems to find the intervals within a speech segment
corresponding to different unknown speakers. Thus, this task requires
clustering speech according to (unknown) speaker identities; in general
the number of speakers present is also unknown. The two-speaker detec-
tion task may be approached as having this task as a front end, with the
number of unknown speakers being two, followed by the one-speaker
detection task applied to each of the two clusters.

8.3 Data

The primary data source for the NIST evaluations has been the Switch-
board Corpora of conversational telephone speech collected over the last
decade by the Linguistic Data Consortium [2]. These all involve 5- to 10-
minute conversations between two speakers. A participant calls into an
automated operator that connects him or her to another participant and
records their conversation as separate sides. The speakers, who generally
do not know each other, are paired and assigned a conversational topic by
an automatic system. Speaker pairs are never repeated and the assigned
topicis never repeated for either speaker. The speakers are recruited adults,
frequently college students, approximately half male and half female, who
are generally paid nominal fees for their participation. They sometimes do
not stick to the assigned topic. Multiple sessions (up to 25) per speaker at
least 1 day (up to weeks) apart are recorded using various telephone hand-
sets over the public telephone network [23]. Table 8.1 describes the
multiple parts of the Switchboard (SWBD) Corpora.

Table 8.1 The Switchboard Corpora:all two-channel mu-law data.

SWBD | SWBD I SWBD I SWBD Il SWBD SWBD
Phase 1 Phase 2 Phase 3 Cellular 1 Cellular 2

Number of 4870 3702 4575 2728 1309 2020
conversations

Number of 543 661 684 640 254 419
speakers

Predominant  Adults College College College Adults Adults
speakers students  students  students

Data style On topic  College College College Topic/ Topic/
chit-chat  chit-chat chit-chat chit-chat chit-chat

Collection 1990 1997- 1998- 1999- 1999- 2000-
dates 1998 1999 2000 2000 2001
Targeted USA Mid- Mid-West  South East coast East coast

location Atlantic
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We discuss below how speaker training data and test segments have been
selected from the Switchboard Corpora to be used in the NIST evaluations
for the one-speaker detection task.

8.3.1 Speaker Training

Training data is provided for the hypothesized speakers of all trials. Such
speakers are referred to as model speakers. The source of the training data
has varied over the course of the evaluations, but the amount of training
data has typically been about two minutes. Early evaluations were designed
to look more closely at how the source of training data affected perfor-
mance. Three types of training data were provided:

1. One session: two minutes of data taken from a single conversation.

2. Two session: one minute of data taken from each of two conversations
where the same telephone handset was used for each.

3. Two handset: one minute of data taken from each of two conversations
where different telephone handsets were used for each.

These early evaluations revealed that a large performance gain was
achieved as the training data became more varied (two handset training
was best). A later evaluation showed, not surprisingly, that longer training
segments improved system performance, but this was a smaller improve-
ment than two handset training. More recent evaluations have used one-
session training. Table 8.2 offers information about the training data pro-
vided in each of the annual evaluations.

In all of the evaluations, the training data has consisted of consecutive
turns of the speaker with areas of silence removed, generally selected from
near the end of the conversation. (The end is perhaps a better, more conver-
sational, choice than the beginning, which may contain more formal intro-
ductions.) The actual durations of the training segments are allowed to
vary within a 10 second range so as to include only whole turns wherever
possible.

8.3.2 Test Segments

In earlier evaluations, test segments were chosen to have fixed durations of
approximately 3, 10 or 30 seconds. As might be expected, performance
improved with longer duration segments. Table 8.2 summarizes the dura-
tions of the test segments over the course of the evaluations.

In the recent evaluations, the one-speaker test segments have had
varying durations ranging up to a minute and averaging about 30 seconds.
They have been selected by choosing a minute of conversation and concate-
nating the turns of each speaker within that minute into two separate test
segments, one per channel. As with the training segments, areas of silence
are removed and whole turns included to the extent possible. No more than
one test segment is created from each conversation side, and no test
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Table 8.2 Information on the NIST Speaker Recognition evaluations, 1996—2002.

Year Primary condition Target speakers/target Evaluation features
trials
1996  Not defined 40/3999 Tests of 3 durations, 3
training conditions
Switchboard-1 data
1997  Train/test using different ~400/3050 Tests of 3 durations, 3
handsets training conditions
30 second durations Switchboard-2 Phase 1
Two handset training data
1998  Train/test using same ~500/2687 Tests of 3 durations, 3
handset training conditions
30 second durations Switchboard-2 Phase 2
Two session training data
Handset type detector
information made
available
1999  Train/test using different 233/479 Added multispeaker
electret handsets tasks
Test durations 15-45 Variable durations used
seconds in main test trials
Two session training Switchboard-2 Phase 3
data
2000  Train/test using different 804/4209 Resegmented 1997,
electret handsets 1998 test data for reuse
Test durations 15-45 Extra test on AHUMADA
seconds Spanish data
One session training
2001  Train/test using different 804/4209 Repeated 2000 main test
electret handsets with some additional
Test durations 15-45 trials
seconds Additional test on
One session training Switchboard cellular
data
Additional test allowing
human or machine
transcripts with
extended training data
2002  Test durations 15-45

seconds
One session training

segments come from conversations where training data is selected from
either side.

In general, each test segment is used in 11 trials, one of which is a target
trial with the segment speaker being the model speaker. The other 10 model
speakers are randomly selected from among all model speakers of the same
sex as the segment speaker. As discussed in the next section on measuring
performance, this 10 to 1 ratio of impostor to target trials is not intended to
reflect what is likely in an actual application environment.
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8.4 Performance Measure

Two types of error can occur in a detection task, often denoted as missed
detections and false alarms. The miss rate, Pyjiss|Target, is the percentage of
target trials decided incorrectly; the false alarm rate, PrajseAlarm|Nontarget> 1S
the percentage of impostor trials decided incorrectly. These error probabil-
ities are determined from a system’s actual decisions.

NIST has chosen to make the basic performance measure a cost function
defined as a weighted sum of these two error rates. This detection cost,
referred to as the Cpe; cost for reasons discussed below, is defined as

Cpet = (Cpmiss X PMiss|Target x PTarget)
+ (CralseAlarm X PFalseAlarm|Impostor X PImpostor) (8.1)

The required parameters in this function are the cost of a miss (Cyyjss), the
cost of a false alarm (Cg,isealarm)> @and the a priori probability of a target
speaker (Prarget). Note that we must have Prypostor = 1 = Prarget- NIST has
used the following parameter values:

Cwmiss = 105 Cralsealarm = 15 Prarget = 0.01 (8.2)

The relatively greater cost of a miss compared to a false alarm is probably
realistic for many applications. The a priori probability of a target speaker
is more arbitrary and application-dependent. Note that this specified a
priori probability need not, and in fact did not, correspond to the actual
percentage of target instances in the evaluation data. An advantage of this
type of error metric formulation is that the test data need not resemble
intended application data in terms of target richness.

The Cpe; value determined is generally normalized based on the prin-
ciple that a system without any speaker knowledge should have an expected
cost of one. With the parameters specified, a knowledge-free system should
opt to decide false for every trial, incurring the cost of a miss for all target
trials. This would result by Equation (8.1) in a Cpe value of 0.1. Thus 0.1 is
used as the normalization factor for all Cp,; values.

The performance of systems on a given task can be shown by bar charts
of the Cp, scores. The left side of Figure 8.1 shows two such bar charts. The
two parts of each bar show the separate contributions of the false alarm and
miss rates to the total Cpe; scores.

This detection cost metric is based on the actual decisions and provides a
single numerical value for comparing system performances. We also, how-
ever, want to examine the range of possible operating points of a system
and compare these across systems. In analyzing factors affecting system
performance, it is curves showing the range of possible operating points
that are of greatest interest. For this, we must use the likelihood scores that
systems are required to provide for each trial.

Receiver operating characteristic (ROC) curves have long been used to
show multiple operating points of systems. In [3], NIST introduced the
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Figure 8.1 Bar charts of actual decision and minimum Cpe¢ scores (left) and the corresponding
DET curve with actual and minimum Cpe; points marked (right).

alternative presentation of detection error trade-off (DET) curves for this
purpose. DET curves place the possible values of the two types of errors on
the horizontal and vertical axes using a normal deviate scale for both. They
have the key property that if the underlying distributions of scores for
target and impostor trials are normal, then the resulting performance
curve plots as a straight line. In the NIST evaluations, the DET plots of
system performance curves have almost always been fairly close to linear.
Because performance is plotted this way, we have chosen to refer to the
error cost function as the Cp,; value.

There are two special points that we note on each DET curve. One is the
actual decision point, denoted by a circle, ®. The other is the point on the
curve having minimum Cp value, denoted by a diamond, ®. These two
points are marked in the DET curve of Figure 8.1, and the two Cp¢ bar
charts in the figure correspond to these two points. The closeness of these
two points is an indication of how well the system chose the likelihood
threshold value used for the actual decisions.

8.5 Evaluation Results

The main one-speaker detection task in each evaluation has generally con-
tained hundreds of speakers and thousands of trials. A subset of these trials
has generally been specified as constituting the primary condition of
interest for the evaluation. The primary condition for the 2002 evaluation
was specified as trials where the training and test segment were of a cellular
transmission type and where the test segment duration was in the 15 to 45
second range. This accounted for the great majority of the trials. In early
evaluations with fixed-duration test segments, the 30 second ones were
regarded as primary. In some of the earlier evaluations using landline con-
versations, one handset microphone type, namely electret, was specified
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Figure 8.2 Bar chart of primary condition Cpet scores in the 2002 evaluation.

for the primary condition. Also in earlier evaluations, the mismatched
(and, in one case, the matched) condition between the handsets used in
training and in tests of the target trials was defined to be part of the pri-
mary condition. Table 8.2 indicates the primary conditions used in each
evaluation.

Figure 8.2 shows a bar chart of the Cp, scores for the actual decisions by
each system in the 2002 one-speaker detection task, using the primary con-
dition trials. Clearly, there is a great deal of variation in system perfor-
mance for this task. In accord with NIST’s understanding with the
participants, we are not identifying the various systems in this plot or the
DET plots presented hereafter.

Figure 8.3 presents the corresponding DET curves for the 2002 one-
speaker detection task. Since the DET plots generally contain more infor-
mation of interest in terms of performance results and trade-off, we here-
after concentrate on these.

8.6 Factors Affecting Detection Performance

Having access to the raw submission results of all participants gives NIST
the opportunity to analyze these results in order to explore various factors
that may affect recognition performance. Over the years, NIST has explored
the significance of numerous data, speaker and channel attributes on
overall performance. Here we discuss several of these using results from
recent evaluations.
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Figure 8.3 DET plot of primary condition systems in the 2002 evaluation.

8.6.1 Duration

Earlier NIST evaluations, as noted, included separate tests in one-speaker
detection for segments of 30,10 and 3 seconds duration. These showed that
performance was significantly greater for 30 second segments than for 10
second segments, while performance on 10 second segments significantly
exceeded that on 3 second segments. For the past four years, there were no
separate tests, and the one-speaker segments averaged around 30 seconds
in duration, but varied over a continuous range of up to 1 minute.

Figure 8.4 displays DET curves of one-speaker detection performance in
2002 by ranges of segment duration for one system. The results shown are
typical of most of the evaluation systems. They indicate that, for such sys-
tems, performance is significantly lower for segments shorter than 15 sec-
onds in duration, but that performance is not greatly affected for segments
longer than 15 seconds. This is consistent with the findings of previous
years, but indicates that the duration effect seen was limited and that once
some minimum duration (apparently in the 10 to 15 second range) is avail-
able,the amount of test speech ceases to be a major factor in performance.

8.6.2 Pitch

Pitch would appear to be an important factor in speaker recognition, but
attempts to specifically include it in algorithms have had only limited suc-
cess [4]. NIST investigated ways in which average speaker pitch affects per-
formance in several of the evaluations. Performance was not very
consistently affected by limiting consideration within each sex to speakers
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Figure 8.4 One-speaker detection performance as a function of duration for a typical system in
the 2002 evaluation.

of particularly high or low pitch [5, 6]. We found, as might be expected, that
limiting impostor trials to instances where the impostor’s average pitch is
close to that of the hypothesized target (in the training data), while
including all target trials, degrades performance. But, perhaps surpris-
ingly, a bigger effect was observed when target trials are restricted to those
with the largest pitch differences between the training and test segments,
while all impostor trials are included.

Figure 8.5 gives an example of a typical system in the 1999 evaluation.
For each speaker, the average pitch of the training data and of each test seg-
ment was estimated. The plot shows a curve of all primary condition tests
and curves limited to target trials where the log pitch difference between
the test segment and the target speaker training data are in the high and low
25% of all such differences. Large pitch differences in target trials may cor-
respond to instances where the speaker had a cold or was feeling particu-
larly emotional during either the training or test conversation. Note how
large the performance differences are. For example, at a 10% miss rate, the
false alarm rate is around 4% when all trials are included. When target
trials are limited to the 25% that are closest in pitch, the false alarm rate is
less than 1%; when limited to the 25% furthest in pitch, the false alarm rate
exceeds 10%.

8.6.3 Handset Differences

The variation in telephone handsets is a major factor affecting the perfor-
mance of speaker recognition using telephone speech. For the landline
Switchboard Corpora, specific handset information is not provided, but
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Figure 8.5 Effect of target pitch differences. Shown for one system is the 1999 primary condition
performance and performance when target trials are restricted to those with the 25% closest and
furthest average pitch differences between the training and test data. The effect of such differ-
ences on performance is quite large.

telephone line information (i.e. the phone number) is. We can generally
assume that if two calls are from different lines, the handsets are different;
if they are from the same line, the handsets are probably the same.

Where possible, we have generally chosen to concentrate in the evalua-
tions on target trials where the training and test segment lines are different.
This is clearly the harder problem. Moreover, using same-line calls is, in a
way, unfairly easy, since for impostor trials, the training and test segment
handsets are always different because, with rare exceptions, speakers do
not share handsets. Thus, using same-line target trials could be viewed as
handset recognition, rather than speaker recognition.

Figure 8.6 shows the large performance difference in the 1999 evaluation
between using same-line and different-line target trials for one system. The
impostor trials are the same in both cases.

8.6.4 Handset Type

Most standard landline telephone handset microphones are of either the
carbon-button or electret type. We observed in early evaluations that the
handset types (i.e.the microphone types) used, in both the training and the
test segments, can greatly influence recognition performance.
MIT-Lincoln Laboratory, which has participated in all of the NIST
speaker recognition evaluations, developed an automatic handset labeler
in a previous evaluation [7]. This handset labeler uses the telephone speech
signal from one channel to assign a likelihood that the signal is from a
carbon-button handset as opposed to an electret handset. This likelihood is
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higher when target trials are restricted to those involving the same phone line (and presumably
handset) in training as in test, as opposed to those involving different lines.

converted into a hard decision (carbon or electret). For subsequent evalua-
tions involving landline data, this hard decision was made available to all of
the participating systems for all of the training and test segments. It should
be noted that the labeler’s decisions were certainly less than perfect, as
occasionally different conversations from the same telephone number were
assigned the opposite type, but the decisions are believed to be generally
quite accurate. Figure 8.7 provides some information on the distribution of
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initiator initiator receiver receiver

Figure 8.7 Handset type distribution in the 1999 test set. Received calls generally involved
electret handsets, but initiated calls are divided between handset types. Presumably this is
because the initiators often used pay phones.Females apparently used fewer carbon button hand-
sets than males. This may indicate a bias in the handset-type determination algorithm.
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handset types in the conversations used in the 1999 evaluation. The main
point to note is that the received calls, generally from home phones, over-
whelmingly involve electret-type handsets, while the initiated calls, often
made from public phones, are split between electret and carbon-button
type handsets. There is also evidence that conversation sides involving
female speakers are more likely to be declared to be of electret type. This
may indicate a slight bias in the automatic handset-type detection algo-
rithm. It may also help to explain the slightly better overall performance of
most systems on male speakers compared to female speakers.

Figure 8.8 shows the variation in performance for different combina-
tions of training and test-segment handset types for one system in the 2001
evaluation. The data plotted here involves a subset of speakers for whom
both electret and carbon-button training data was provided, giving two
models for each speaker. The trials used are paired by the two models of
each target speaker. All target trials involve different telephone numbers. It
may be seen that there is a considerable performance advantage to having
matching handset types of the higher quality electret type. This was the
case for almost all systems. There was some variation in the relative perfor-
mance of the three other combinations across systems. There appear to be
competing advantages to having matched types in training and test data
and to having at least some higher quality electret data used, perhaps
particularly in the training.
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Figure 8.8 Performance as a function of training/test handset. Performance for one system on
different number tests for each combination of training and test handset types. All speakers here
have both a carbon-button and an electret trained model, and all the trials are paired by such
target models. Performance is best when all data is electret.
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Figure 8.9 DET plotsof the best systems on the 2002 cellular,2001 cellular and 2001 landline test
sets.

8.6.5 Landline vs. Cellular

The past few years have brought an increasing interest in the processing of
cellular data for both speech and speaker recognition. The two most recent
Switchboard collections (shown in Table 8.1) have consisted primarily of
cellular conversational data. These collections were used as a subsidiary
test in the 2001 evaluation and as the main evaluation data in 2002. Figure
8.9 presents DET plots of the best performing systems on the 2001 landline,
2001 cellular and 2002 cellular evaluation sets.

If the two cellular test sets are of comparable difficulty, and other com-
parisons suggest that they are, then Figure 8.9 shows some real improve-
ment in the best system performance between 2001 and 2002. The 2001
curves also show that the cellular test sets are measurably more difficult.
This comparison, however, rather understates the differences in relative
difficulty of landline and cellular data. This is because the landline data is
selected so that the target trials always involve different handsets in
training and test data, but the collection protocol for cellular does not
permit this, and, in most target trials, the training and test handsets are the
same.

The greater difficulty of speaker detection in the cellular context will be
subject to further investigation in future evaluations. New data collections
may make it possible to investigate target trials with different training and
test handsets, including mixed cellular and landline combinations.
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8.7 Extended Data Evaluation

The accuracy improvements in text-independent speaker detection over
the course of the NIST evaluations have been mostly incremental. Each
year, evaluation participants would add a few useful ideas to their existing
speaker detection systems, often influenced by what had worked for other
participants in the previous evaluation. Most systems in recent NIST evalu-
ations have converged on variations of the Gaussian mixture model (GMM)
technique [18]. The evaluation paradigm encourages this kind of
incrementalism, which can produce markedly, but usually not radically,
better systems over the years.

But in 2000, George Doddington suggested a radically different approach to
the task, which might, under proper conditions, offer major speaker recogni-
tion accuracy improvements [10, 17]. This idea was tested in what became
known as the extended data portion of the NIST one-speaker detection task in
the 2001 and 2002 evaluations. This involved considerably longer training data
durations (multiple conversation sides) and test segment durations (a whole
conversation side), relative to the conventional one-speaker detection task.

People are generally pretty good and quite robust speaker recognizers [22].
Doddington observed that people do a better job of detecting those with
whom they are quite familiar than those they do not know well. They become
accustomed to the speaking habits and idiosyncrasies of those they know well.
Doddington suggested making use of idiolectal characteristics of speakers for
whom considerable transcribed speech data was available. He showed that by
using the available manual transcripts of the Switchboard-1 conversations,
one could make use of the word patterns - specifically the common unigrams,
bigrams and trigrams - of individual speakers for detection purposes.In [17],
Doddington was the first to show the power of speaker-dependent language
models for speaker recognition. As expected, considerable training data is
needed to model a speaker’s language and realize the benefits of this new tech-
nique. The best results used eight or more conversation sides (generally five
minutes per conversation) of each speaker for training data.

The 2001 evaluation included a development-type test of the Switch-
board-1 conversations, as studied by Doddington. A jackknifing procedure
was used to make use of all the conversation sides as test segments, where
multiple models are trained for each speaker using 1,2, 4, 8 or 16 sides as a
speaker’s training data. Participants were offered uncorrected transcripts
of all the conversation sides, exactly as produced by an automatic speech
r